Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28

1.

CIRCADIAN CLOCK-ASSOCIATED1 controls resistance to aphids by altering indole glucosinolate production.

Lei J, Jayaprakasha GK, Singh J, Uckoo R, Borrego EJ, Finlayson SA, Kolomiets MV, Patil BS, Braam J, Zhu-Salzman K.

Plant Physiol. 2019 Sep 16. pii: pp.00676.2019. doi: 10.1104/pp.19.00676. [Epub ahead of print]

2.

Sorghum tiller bud growth is repressed by contact with the overlying leaf.

Liu R, Finlayson SA.

Plant Cell Environ. 2019 Jul;42(7):2120-2132. doi: 10.1111/pce.13548. Epub 2019 Apr 16.

PMID:
30875440
3.

Rewiring of auxin signaling under persistent shade.

Pucciariello O, Legris M, Costigliolo Rojas C, Iglesias MJ, Hernando CE, Dezar C, Vazquez M, Yanovsky MJ, Finlayson SA, Prat S, Casal JJ.

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5612-5617. doi: 10.1073/pnas.1721110115. Epub 2018 May 3.

4.

Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis.

Fukudome A, Goldman JS, Finlayson SA, Koiwa H.

Plant J. 2018 Jun;94(5):799-812. doi: 10.1111/tpj.13895. Epub 2018 Apr 17.

5.
6.

Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance.

PacĂ­n M, Semmoloni M, Legris M, Finlayson SA, Casal JJ.

New Phytol. 2016 Aug;211(3):967-79. doi: 10.1111/nph.13965. Epub 2016 Apr 22.

7.

Abscisic Acid Is a General Negative Regulator of Arabidopsis Axillary Bud Growth.

Yao C, Finlayson SA.

Plant Physiol. 2015 Sep;169(1):611-26. doi: 10.1104/pp.15.00682. Epub 2015 Jul 6.

8.

The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence.

Zhou J, Lu D, Xu G, Finlayson SA, He P, Shan L.

J Exp Bot. 2015 Jun;66(11):3353-66. doi: 10.1093/jxb/erv148. Epub 2015 Apr 11.

9.

Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, Mahan J, Akhunova A, Holalu SV, Lu N.

J Plant Physiol. 2014 Sep 1;171(14):1289-98. doi: 10.1016/j.jplph.2014.05.005. Epub 2014 Jun 6.

10.

The timing of low R:FR exposure profoundly affects Arabidopsis branching responses.

Reddy SK, Holalu SV, Casal JJ, Finlayson SA.

Plant Signal Behav. 2014;9(3):e28668. Epub 2014 Apr 8.

11.

Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

Krishna Reddy S, Finlayson SA.

Plant Physiol. 2014 Mar;164(3):1542-50. doi: 10.1104/pp.113.234021. Epub 2014 Feb 3.

12.

Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light.

Reddy SK, Holalu SV, Casal JJ, Finlayson SA.

Plant Physiol. 2013 Oct;163(2):1047-58. doi: 10.1104/pp.113.221895. Epub 2013 Aug 8.

13.

Stem transcriptome reveals mechanisms to reduce the energetic cost of shade-avoidance responses in tomato.

Cagnola JI, Ploschuk E, Benech-Arnold T, Finlayson SA, Casal JJ.

Plant Physiol. 2012 Oct;160(2):1110-9. doi: 10.1104/pp.112.201921. Epub 2012 Aug 7.

14.

Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis.

Su H, Abernathy SD, White RH, Finlayson SA.

Plant Cell Environ. 2011 Nov;34(11):1986-98. doi: 10.1111/j.1365-3040.2011.02393.x. Epub 2011 Jul 28.

15.

Vegetative axillary bud dormancy induced by shade and defoliation signals in the grasses.

Kebrom TH, Brutnell TP, Hays DB, Finlayson SA.

Plant Signal Behav. 2010 Mar;5(3):317-9. Epub 2010 Mar 7.

16.

Phytochrome regulation of branching in Arabidopsis.

Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ.

Plant Physiol. 2010 Apr;152(4):1914-27. doi: 10.1104/pp.109.148833. Epub 2010 Feb 12.

17.

Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways.

Kebrom TH, Brutnell TP, Finlayson SA.

Plant Cell Environ. 2010 Jan;33(1):48-58. doi: 10.1111/j.1365-3040.2009.02050.x. Epub 2009 Oct 14.

18.

phyB-1 sorghum maintains responsiveness to simulated shade, irradiance and red light: far-red light.

Finlayson SA, Hays DB, Morgan PW.

Plant Cell Environ. 2007 Aug;30(8):952-62.

19.

Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare).

Singh M, Burson BL, Finlayson SA.

Plant Mol Biol. 2007 Aug;64(6):673-82. Epub 2007 May 31.

PMID:
17541705
20.
21.

Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals.

Kebrom TH, Burson BL, Finlayson SA.

Plant Physiol. 2006 Mar;140(3):1109-17. Epub 2006 Jan 27.

22.

Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses.

Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt MM, Mullet JE.

Plant Physiol. 2005 May;138(1):352-68. Epub 2005 Apr 29.

23.

The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading.

Finlayson SA, Lee IJ, Mullet JE, Morgan PW.

Plant Physiol. 1999 Mar;119(3):1083-9. Erratum in: Plant Physiol 1999 May;120(1):341.

24.

Ethylene Biosynthesis during Aerenchyma Formation in Roots of Maize Subjected to Mechanical Impedance and Hypoxia.

He C, Finlayson SA, Drew MC, Jordan WR, Morgan PW.

Plant Physiol. 1996 Dec;112(4):1679-1685.

25.
26.
27.
28.

NAD+-specific glycerol 3-phosphate dehydrogenase from developing castor bean endosperm.

Finlayson SA, Dennis DT.

Arch Biochem Biophys. 1980 Jan;199(1):179-85. No abstract available.

PMID:
6766703

Supplemental Content

Loading ...
Support Center