Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 92

1.

Designer Sinorhizobium meliloti strains and multi-functional vectors enable direct inter-kingdom DNA transfer.

Brumwell SL, MacLeod MR, Huang T, Cochrane RR, Meaney RS, Zamani M, Matysiakiewicz O, Dan KN, Janakirama P, Edgell DR, Charles TC, Finan TM, Karas BJ.

PLoS One. 2019 Jun 17;14(6):e0206781. doi: 10.1371/journal.pone.0206781. eCollection 2019. Erratum in: PLoS One. 2019 Jul 9;14(7):e0219562.

2.

Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism.

Kohlmeier MG, White CE, Fowler JE, Finan TM, Oresnik IJ.

Mol Genet Genomics. 2019 Jun;294(3):739-755. doi: 10.1007/s00438-019-01545-z. Epub 2019 Mar 16.

PMID:
30879203
3.

Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti.

Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, Luchinat C, Turano P, Vignolini T, Viti C, Mengoni A.

ACS Synth Biol. 2018 Oct 19;7(10):2365-2378. doi: 10.1021/acssynbio.8b00158. Epub 2018 Oct 3.

PMID:
30223644
4.

Multidisciplinary approaches for studying rhizobium-legume symbioses.

diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A.

Can J Microbiol. 2019 Jan;65(1):1-33. doi: 10.1139/cjm-2018-0377. Epub 2018 Sep 11. Review.

5.

Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti.

diCenzo GC, Benedict AB, Fondi M, Walker GC, Finan TM, Mengoni A, Griffitts JS.

PLoS Genet. 2018 Apr 19;14(4):e1007357. doi: 10.1371/journal.pgen.1007357. eCollection 2018 Apr.

6.

Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome.

diCenzo GC, Wellappili D, Golding GB, Finan TM.

G3 (Bethesda). 2018 May 4;8(5):1711-1720. doi: 10.1534/g3.117.300405.

7.

Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions.

diCenzo GC, Finan TM.

Methods Mol Biol. 2018;1716:291-314. doi: 10.1007/978-1-4939-7528-0_13.

PMID:
29222759
8.

Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.

Mitsch MJ, diCenzo GC, Cowie A, Finan TM.

Appl Environ Microbiol. 2017 Dec 15;84(1). pii: e01561-17. doi: 10.1128/AEM.01561-17. Print 2018 Jan 1.

9.

A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in Sinorhizobium meliloti.

diCenzo GC, Muhammed Z, Østerås M, O'Brien SAP, Finan TM.

Genetics. 2017 Nov;207(3):961-974. doi: 10.1534/genetics.117.300212. Epub 2017 Aug 29.

10.

The Divided Bacterial Genome: Structure, Function, and Evolution.

diCenzo GC, Finan TM.

Microbiol Mol Biol Rev. 2017 Aug 9;81(3). pii: e00019-17. doi: 10.1128/MMBR.00019-17. Print 2017 Sep. Review.

11.

PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti.

diCenzo GC, Sharthiya H, Nanda A, Zamani M, Finan TM.

J Bacteriol. 2017 Aug 22;199(18). pii: e00143-17. doi: 10.1128/JB.00143-17. Print 2017 Sep 15.

12.

Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis.

diCenzo GC, Zamani M, Ludwig HN, Finan TM.

Mol Plant Microbe Interact. 2017 Apr;30(4):312-324. doi: 10.1094/MPMI-02-17-0030-R. Epub 2017 Apr 10.

13.

A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234.

Zamani M, diCenzo GC, Milunovic B, Finan TM.

Environ Microbiol. 2017 Jan;19(1):218-236. doi: 10.1111/1462-2920.13570. Epub 2016 Dec 12.

PMID:
27727485
14.

Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti.

Zhang Y, Smallbone LA, diCenzo GC, Morton R, Finan TM.

BMC Microbiol. 2016 Jul 26;16(1):163. doi: 10.1186/s12866-016-0780-x.

15.

Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti.

diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M.

Nat Commun. 2016 Jul 22;7:12219. doi: 10.1038/ncomms12219.

16.

L-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti.

Chen S, White CE, diCenzo GC, Zhang Y, Stogios PJ, Savchenko A, Finan TM.

J Bacteriol. 2016 Feb 1;198(7):1171-81. doi: 10.1128/JB.00961-15.

17.

Genomic resources for identification of the minimal N2 -fixing symbiotic genome.

diCenzo GC, Zamani M, Milunovic B, Finan TM.

Environ Microbiol. 2016 Sep;18(8):2534-47. doi: 10.1111/1462-2920.13221. Epub 2016 Feb 16.

PMID:
26768651
18.

Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype.

diCenzo GC, Zamani M, Cowie A, Finan TM.

Microbiology. 2015 Dec;161(12):2341-51. doi: 10.1099/mic.0.000182. Epub 2015 Sep 21.

PMID:
26395514
19.

Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome.

diCenzo GC, Finan TM.

Mol Genet Genomics. 2015 Aug;290(4):1345-56. doi: 10.1007/s00438-015-0998-6. Epub 2015 Feb 1.

PMID:
25638282
20.

Examination of prokaryotic multipartite genome evolution through experimental genome reduction.

diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM.

PLoS Genet. 2014 Oct 23;10(10):e1004742. doi: 10.1371/journal.pgen.1004742. eCollection 2014 Oct.

21.

Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti.

Milunovic B, diCenzo GC, Morton RA, Finan TM.

J Bacteriol. 2014 Feb;196(4):811-24. doi: 10.1128/JB.01104-13. Epub 2013 Dec 6.

22.
23.

Control of hydroxyproline catabolism in Sinorhizobium meliloti.

White CE, Gavina JM, Morton R, Britz-McKibbin P, Finan TM.

Mol Microbiol. 2012 Sep;85(6):1133-47. doi: 10.1111/j.1365-2958.2012.08164.x. Epub 2012 Jul 27.

24.

NAD(P)+-malic enzyme mutants of Sinorhizobium sp. strain NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities.

Zhang Y, Aono T, Poole P, Finan TM.

Appl Environ Microbiol. 2012 Apr;78(8):2803-12. doi: 10.1128/AEM.06412-11. Epub 2012 Feb 3.

25.

An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations.

Cheng J, Poduska B, Morton RA, Finan TM.

J Bacteriol. 2011 Sep;193(17):4405-16. doi: 10.1128/JB.05045-11. Epub 2011 Jul 1.

26.

The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti.

Maclean AM, Haerty W, Golding GB, Finan TM.

Microbiology. 2011 Sep;157(Pt 9):2522-33. doi: 10.1099/mic.0.050542-0. Epub 2011 Jun 23.

PMID:
21700663
27.

Determination of 4-hydroxyproline-2-epimerase activity by capillary electrophoresis: A stereoselective platform for inhibitor screening of amino acid isomerases.

Gavina JM, White CE, Finan TM, Britz-McKibbin P.

Electrophoresis. 2010 Aug;31(16):2831-7. doi: 10.1002/elps.201000187.

PMID:
20665524
28.

Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation.

Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CR, López-Lara IM, Geiger O.

Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):302-7. doi: 10.1073/pnas.0912930107. Epub 2009 Dec 14.

29.

Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti.

Maclean AM, White CE, Fowler JE, Finan TM.

Mol Plant Microbe Interact. 2009 Sep;22(9):1116-27. doi: 10.1094/MPMI-22-9-1116.

30.

A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti.

Basconcillo LS, Zaheer R, Finan TM, McCarry BE.

J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep 15;877(26):2873-82. doi: 10.1016/j.jchromb.2009.05.014. Epub 2009 May 15.

PMID:
19525157
31.

Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria.

Zaheer R, Morton R, Proudfoot M, Yakunin A, Finan TM.

Environ Microbiol. 2009 Jun;11(6):1572-87. doi: 10.1111/j.1462-2920.2009.01885.x. Epub 2009 Feb 24.

PMID:
19245529
32.

Cyclopropane fatty acyl synthase in Sinorhizobium meliloti.

Saborido Basconcillo L, Zaheer R, Finan TM, McCarry BE.

Microbiology. 2009 Feb;155(Pt 2):373-85. doi: 10.1099/mic.0.022608-0.

PMID:
19202086
33.

A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics.

Basconcillo LS, Zaheer R, Finan TM, McCarry BE.

J Lipid Res. 2009 Jun;50(6):1120-32. doi: 10.1194/jlr.M800443-JLR200. Epub 2008 Dec 18.

34.

Quorum quenching in Agrobacterium tumefaciens: chance or necessity?

White CE, Finan TM.

J Bacteriol. 2009 Feb;191(4):1123-5. doi: 10.1128/JB.01681-08. Epub 2008 Dec 12. No abstract available.

35.
36.

Genomes of the symbiotic nitrogen-fixing bacteria of legumes.

MacLean AM, Finan TM, Sadowsky MJ.

Plant Physiol. 2007 Jun;144(2):615-22. Review. No abstract available.

37.

A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis.

Cheng J, Sibley CD, Zaheer R, Finan TM.

Microbiology. 2007 Feb;153(Pt 2):375-87.

PMID:
17259609
38.

Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome.

Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AH, Poole PS, Finan TM.

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17933-8. Epub 2006 Nov 13.

39.

Malic enzyme cofactor and domain requirements for symbiotic N2 fixation by Sinorhizobium meliloti.

Mitsch MJ, Cowie A, Finan TM.

J Bacteriol. 2007 Jan;189(1):160-8. Epub 2006 Oct 27.

40.

An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti.

Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM.

Appl Environ Microbiol. 2006 Nov;72(11):7156-67. Epub 2006 Sep 8.

41.

Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti.

MacLean AM, MacPherson G, Aneja P, Finan TM.

Appl Environ Microbiol. 2006 Aug;72(8):5403-13.

42.

Promoter prediction in the rhizobia.

MacLellan SR, MacLean AM, Finan TM.

Microbiology. 2006 Jun;152(Pt 6):1751-63.

PMID:
16735738
43.

Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria.

Yuan ZC, Zaheer R, Morton R, Finan TM.

Nucleic Acids Res. 2006 May 22;34(9):2686-97. Print 2006.

44.

Identification of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons.

MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM.

Mol Microbiol. 2006 Mar;59(5):1559-75.

45.
46.
48.

Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti.

Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H.

J Bacteriol. 2005 Oct;187(20):6991-7.

49.
50.

Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain.

Rodríguez-Echeverría S, Pérez-Fernández MA, Vlaar S, Finan TM.

J Appl Microbiol. 2003;95(6):1367-74. Erratum in: J Appl Microbiol. 2004;97(6):1328. Finnan, T [corrected to Finan, T M ].

Supplemental Content

Loading ...
Support Center