Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism.

Liu N, Fosses A, Kampik C, Parsiegla G, Denis Y, Vita N, Fierobe HP, Perret S.

Biotechnol Biofuels. 2019 Sep 3;12:208. doi: 10.1186/s13068-019-1549-x. eCollection 2019.

2.

The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action.

Mroueh M, Aruanno M, Borne R, de Philip P, Fierobe HP, Tardif C, Pagès S.

Biotechnol Biofuels. 2019 Jun 10;12:144. doi: 10.1186/s13068-019-1483-y. eCollection 2019.

3.

ABC Transporters Required for Hexose Uptake by Clostridium phytofermentans.

Cerisy T, Iglesias A, Rostain W, Boutard M, Pelle C, Perret A, Salanoubat M, Fierobe HP, Tolonen AC.

J Bacteriol. 2019 Jul 10;201(15). pii: e00241-19. doi: 10.1128/JB.00241-19. Print 2019 Aug 1.

PMID:
31109990
4.

Turning a potent family-9 free cellulase into an operational cellulosomal component and vice versa.

Vita N, Borne R, Perret S, de Philip P, Fierobe HP.

FEBS J. 2019 Sep;286(17):3359-3373. doi: 10.1111/febs.14858. Epub 2019 May 3.

PMID:
31004451
5.

Retraction for Anderson et al., "Assembly of Minicellulosomes on the Surface of Bacillus subtilis".

Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe HP, Lazazzera BA, Clubb RT.

Appl Environ Microbiol. 2018 Jan 31;84(4). pii: e02429-17. doi: 10.1128/AEM.02429-17. Print 2018 Feb 15. No abstract available.

6.

Restoration of cellulase activity in the inactive cellulosomal protein Cel9V from Ruminiclostridium cellulolyticum.

Vita N, Ravachol J, Franche N, Borne R, Tardif C, Pagès S, Fierobe HP.

FEBS Lett. 2018 Jan;592(2):190-198. doi: 10.1002/1873-3468.12957. Epub 2018 Jan 12.

7.

A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis.

Fosses A, Maté M, Franche N, Liu N, Denis Y, Borne R, de Philip P, Fierobe HP, Perret S.

Biotechnol Biofuels. 2017 Oct 30;10:250. doi: 10.1186/s13068-017-0933-7. eCollection 2017.

8.

Cel5I, a SLH-Containing Glycoside Hydrolase: Characterization and Investigation on Its Role in Ruminiclostridium cellulolyticum.

Franche N, Tardif C, Ravachol J, Harchouni S, Ferdinand PH, Borne R, Fierobe HP, Perret S.

PLoS One. 2016 Aug 8;11(8):e0160812. doi: 10.1371/journal.pone.0160812. eCollection 2016.

9.

Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum.

Ravachol J, de Philip P, Borne R, Mansuelle P, Maté MJ, Perret S, Fierobe HP.

Sci Rep. 2016 Mar 7;6:22770. doi: 10.1038/srep22770.

10.

Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum.

Ravachol J, Borne R, Meynial-Salles I, Soucaille P, Pagès S, Tardif C, Fierobe HP.

Biotechnol Biofuels. 2015 Aug 13;8:114. doi: 10.1186/s13068-015-0301-4. eCollection 2015.

11.

Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum.

Ravachol J, Borne R, Tardif C, de Philip P, Fierobe HP.

J Biol Chem. 2014 Mar 14;289(11):7335-48. doi: 10.1074/jbc.M113.545046. Epub 2014 Jan 22.

12.

Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity.

Borne R, Bayer EA, Pagès S, Perret S, Fierobe HP.

FEBS J. 2013 Nov;280(22):5764-79. doi: 10.1111/febs.12497. Epub 2013 Sep 10.

13.

Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose?

Ferdinand PH, Borne R, Trotter V, Pagès S, Tardif C, Fierobe HP, Perret S.

PLoS One. 2013 Jul 25;8(7):e69360. doi: 10.1371/journal.pone.0069360. Print 2013.

14.

A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum.

Celik H, Blouzard JC, Voigt B, Becher D, Trotter V, Fierobe HP, Tardif C, Pagès S, de Philip P.

PLoS One. 2013;8(2):e56063. doi: 10.1371/journal.pone.0056063. Epub 2013 Feb 13.

15.

Recombinant Bacillus subtilis that grows on untreated plant biomass.

Anderson TD, Miller JI, Fierobe HP, Clubb RT.

Appl Environ Microbiol. 2013 Feb;79(3):867-76. doi: 10.1128/AEM.02433-12. Epub 2012 Nov 26. Retraction in: Anderson TD, Miller JI, Fierobe HP, Clubb RT. Appl Environ Microbiol. 2015 Nov 15;81(22):7957.

16.

Engineering cellulase activity into Clostridium acetobutylicum.

Fierobe HP, Mingardon F, Chanal A.

Methods Enzymol. 2012;510:301-16. doi: 10.1016/B978-0-12-415931-0.00016-1.

PMID:
22608733
17.

Small-angle X-ray scattering and crystallography: a winning combination for exploring the multimodular organization of cellulolytic macromolecular complexes.

Czjzek M, Fierobe HP, Receveur-Bréchot V.

Methods Enzymol. 2012;510:183-210. doi: 10.1016/B978-0-12-415931-0.00010-0.

PMID:
22608727
18.

Scaffoldin modules serving as "cargo" domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum.

Chanal A, Mingardon F, Bauzan M, Tardif C, Fierobe HP.

Appl Environ Microbiol. 2011 Sep;77(17):6277-80. doi: 10.1128/AEM.00758-11. Epub 2011 Jul 15.

19.

Assembly of minicellulosomes on the surface of Bacillus subtilis.

Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe HP, Lazazzera BA, Clubb RT.

Appl Environ Microbiol. 2011 Jul;77(14):4849-58. doi: 10.1128/AEM.02599-10. Epub 2011 May 27. Retraction in: Appl Environ Microbiol. 2018 Jan 31;84(4):.

20.

The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824.

Mingardon F, Chanal A, Tardif C, Fierobe HP.

Appl Environ Microbiol. 2011 May;77(9):2831-8. doi: 10.1128/AEM.03012-10. Epub 2011 Mar 4.

21.

Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers.

Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Bréchot V, Fierobe HP.

J Mol Biol. 2011 Jan 7;405(1):143-57. doi: 10.1016/j.jmb.2010.10.013. Epub 2010 Oct 21.

PMID:
20970432
22.

Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses.

Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pagès S, de Philip P.

Proteomics. 2010 Feb;10(3):541-54. doi: 10.1002/pmic.200900311.

PMID:
20013800
23.

Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae.

Lilly M, Fierobe HP, van Zyl WH, Volschenk H.

FEMS Yeast Res. 2009 Dec;9(8):1236-49. doi: 10.1111/j.1567-1364.2009.00564.x. Epub 2009 Aug 6.

24.

The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes.

Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pagès S, Perret S.

FEBS J. 2009 Jun;276(11):3076-86. doi: 10.1111/j.1742-4658.2009.07025.x. Epub 2009 Apr 22.

25.

Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.

Caspi J, Irwin D, Lamed R, Li Y, Fierobe HP, Wilson DB, Bayer EA.

J Biotechnol. 2008 Jul 31;135(4):351-7. doi: 10.1016/j.jbiotec.2008.05.003. Epub 2008 May 16.

PMID:
18582975
26.

The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner.

Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JA, Money VA, Davies GJ, Bayer EA, Fontesm CM, Fierobe HP, Gilbert HJ.

J Biol Chem. 2008 Jun 27;283(26):18422-30. doi: 10.1074/jbc.M801533200. Epub 2008 Apr 28.

27.

Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element.

Abdou L, Boileau C, de Philip P, Pagès S, Fiérobe HP, Tardif C.

J Bacteriol. 2008 Mar;190(5):1499-506. Epub 2007 Dec 21.

28.

Exploration of new geometries in cellulosome-like chimeras.

Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP.

Appl Environ Microbiol. 2007 Nov;73(22):7138-49. Epub 2007 Sep 28.

29.

Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.

Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe HP.

Appl Environ Microbiol. 2007 Jun;73(12):3822-32. Epub 2007 Apr 27.

30.

Structural basis of cellulosome efficiency explored by small angle X-ray scattering.

Hammel M, Fierobe HP, Czjzek M, Kurkal V, Smith JC, Bayer EA, Finet S, Receveur-Bréchot V.

J Biol Chem. 2005 Nov 18;280(46):38562-8. Epub 2005 Sep 12.

31.

Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824.

Mingardon F, Perret S, Bélaïch A, Tardif C, Bélaïch JP, Fierobe HP.

Appl Environ Microbiol. 2005 Mar;71(3):1215-22.

32.

Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin.

Fierobe HP, Mingardon F, Mechaly A, Bélaïch A, Rincon MT, Pagès S, Lamed R, Tardif C, Bélaïch JP, Bayer EA.

J Biol Chem. 2005 Apr 22;280(16):16325-34. Epub 2005 Feb 10.

33.

Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain.

Levasseur A, Pagès S, Fierobe HP, Navarro D, Punt P, Belaïch JP, Asther M, Record E.

Appl Environ Microbiol. 2004 Dec;70(12):6984-91.

34.

Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering.

Hammel M, Fierobe HP, Czjzek M, Finet S, Receveur-Bréchot V.

J Biol Chem. 2004 Dec 31;279(53):55985-94. Epub 2004 Oct 23.

35.

Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum.

Perret S, Bélaich A, Fierobe HP, Bélaich JP, Tardif C.

J Bacteriol. 2004 Oct;186(19):6544-52.

36.

Pinpoint mapping of recognition residues on the cohesin surface by progressive homologue swapping.

Nakar D, Handelsman T, Shoham Y, Fierobe HP, Belaich JP, Morag E, Lamed R, Bayer EA.

J Biol Chem. 2004 Oct 8;279(41):42881-8. Epub 2004 Aug 3.

37.

Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1.

Maamar H, Valette O, Fierobe HP, Bélaich A, Bélaich JP, Tardif C.

Mol Microbiol. 2004 Jan;51(2):589-98.

38.

Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824.

Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A.

J Bacteriol. 2004 Jan;186(1):253-7.

39.

Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components.

Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Bélaïch A, Lamed R, Shoham Y, Bélaïch JP.

J Biol Chem. 2002 Dec 20;277(51):49621-30. Epub 2002 Oct 22.

40.

Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes.

Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA.

J Biol Chem. 2001 Jun 15;276(24):21257-61. Epub 2001 Apr 4.

41.

Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition.

Mechaly A, Fierobe HP, Belaich A, Belaich JP, Lamed R, Shoham Y, Bayer EA.

J Biol Chem. 2001 Mar 30;276(13):9883-8. Epub 2001 Jan 8. Erratum in: J Biol Chem 2001 Jun 1;276(22):19678.

42.

Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition.

Spinelli S, Fiérobe HP, Belaïch A, Belaïch JP, Henrissat B, Cambillau C.

J Mol Biol. 2000 Nov 24;304(2):189-200.

PMID:
11080455
43.

Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis.

Mechaly A, Yaron S, Lamed R, Fierobe HP, Belaich A, Belaich JP, Shoham Y, Bayer EA.

Proteins. 2000 May 1;39(2):170-7.

PMID:
10737938
44.

Cellulosome from Clostridium cellulolyticum: molecular study of the Dockerin/Cohesin interaction.

Fierobe HP, Pagès S, Bélaïch A, Champ S, Lexa D, Bélaïch JP.

Biochemistry. 1999 Sep 28;38(39):12822-32.

PMID:
10504252
45.
47.

Structure, function and protein engineering of starch-degrading enzymes.

Gottschalk TE, Fierobe HP, Mirgorodskaya E, Clarke AJ, Tull D, Sigurskjold BW, Christensen T, Payre N, Frandsen TP, Juge N, McGuire KA, Cottaz S, Roepstorff P, Driguez H, Williamson G, Svensson B.

Biochem Soc Trans. 1998 May;26(2):198-204. Review. No abstract available.

PMID:
9649747
48.
49.

Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid.

Fierobe HP, Mirgorodskaya E, McGuire KA, Roepstorff P, Svensson B, Clarke AJ.

Biochemistry. 1998 Mar 17;37(11):3743-52.

PMID:
9521693

Supplemental Content

Loading ...
Support Center