Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43


Genetic Manipulation of Chlamydia trachomatis: Chromosomal Deletions.

Wolf K, Rahnama M, Fields KA.

Methods Mol Biol. 2019;2042:151-164. doi: 10.1007/978-1-4939-9694-0_11.


Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.

Keb G, Hayman R, Fields KA.

J Bacteriol. 2018 Nov 26;200(24). pii: e00479-18. doi: 10.1128/JB.00479-18. Print 2018 Dec 15.


Transformation of Chlamydia: current approaches and impact on our understanding of chlamydial infection biology.

Rahnama M, Fields KA.

Microbes Infect. 2018 Aug - Sep;20(7-8):445-450. doi: 10.1016/j.micinf.2018.01.002. Epub 2018 Feb 2. Review.


Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK.

McKuen MJ, Mueller KE, Bae YS, Fields KA.

Infect Immun. 2017 Nov 17;85(12). pii: e00640-17. doi: 10.1128/IAI.00640-17. Print 2017 Dec.


Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis.

Mueller KE, Wolf K, Fields KA.

Curr Protoc Microbiol. 2017 May 16;45:11A.3.1-11A.3.15. doi: 10.1002/cpmc.31.


Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis.

Mueller KE, Wolf K, Fields KA.

MBio. 2016 Jan 19;7(1):e01817-15. doi: 10.1128/mBio.01817-15.


A working model for the type III secretion mechanism in Chlamydia.

Ferrell JC, Fields KA.

Microbes Infect. 2016 Feb;18(2):84-92. doi: 10.1016/j.micinf.2015.10.006. Epub 2015 Oct 26. Review.


New frontiers in type III secretion biology: the Chlamydia perspective.

Mueller KE, Plano GV, Fields KA.

Infect Immun. 2014 Jan;82(1):2-9. doi: 10.1128/IAI.00917-13. Epub 2013 Oct 14. Review.


The host-encoded Heme Regulated Inhibitor (HRI) facilitates virulence-associated activities of bacterial pathogens.

Shrestha N, Boucher J, Bahnan W, Clark ES, Rosqvist R, Fields KA, Khan WN, Schesser K.

PLoS One. 2013 Jul 10;8(7):e68754. doi: 10.1371/journal.pone.0068754. Print 2013.


Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity.

Engström P, Nguyen BD, Normark J, Nilsson I, Bastidas RJ, Gylfe A, Elofsson M, Fields KA, Valdivia RH, Wolf-Watz H, Bergström S.

J Bacteriol. 2013 Sep;195(18):4221-30. doi: 10.1128/JB.00506-13. Epub 2013 Jul 12.


Perforin-2 restricts growth of Chlamydia trachomatis in macrophages.

Fields KA, McCormack R, de Armas LR, Podack ER.

Infect Immun. 2013 Aug;81(8):3045-54. doi: 10.1128/IAI.00497-13. Epub 2013 Jun 10.


Assessing a potential role of host Pannexin 1 during Chlamydia trachomatis infection.

McKuen MJ, Dahl G, Fields KA.

PLoS One. 2013 May 20;8(5):e63732. doi: 10.1371/journal.pone.0063732. Print 2013.


Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3.

Wolf K, Fields KA.

J Immunol. 2013 Feb 15;190(4):1695-701. doi: 10.4049/jimmunol.1202443. Epub 2013 Jan 9.


Eukaryotic initiation factor 2 (eIF2) signaling regulates proinflammatory cytokine expression and bacterial invasion.

Shrestha N, Bahnan W, Wiley DJ, Barber G, Fields KA, Schesser K.

J Biol Chem. 2012 Aug 17;287(34):28738-44. doi: 10.1074/jbc.M112.375915. Epub 2012 Jul 2.


Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins.

Bullock HD, Hower S, Fields KA.

J Biol Chem. 2012 Aug 10;287(33):28078-86. doi: 10.1074/jbc.M112.386904. Epub 2012 Jun 18.


Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development.

Betts-Hampikian HJ, Fields KA.

J Bacteriol. 2011 Dec;193(24):6950-9. doi: 10.1128/JB.05163-11. Epub 2011 Oct 14.


The obligate intracellular lifestyle.

Fields KA, Heinzen RA, Carabeo R.

Front Microbiol. 2011 May 5;2:99. doi: 10.3389/fmicb.2011.00099. eCollection 2011. No abstract available.


Biochemical and localization analyses of putative type III secretion translocator proteins CopB and CopB2 of Chlamydia trachomatis reveal significant distinctions.

Chellas-Géry B, Wolf K, Tisoncik J, Hackstadt T, Fields KA.

Infect Immun. 2011 Aug;79(8):3036-45. doi: 10.1128/IAI.00159-11. Epub 2011 May 23.


Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae.

Silva-Herzog E, Joseph SS, Avery AK, Coba JA, Wolf K, Fields KA, Plano GV.

J Bacteriol. 2011 Jul;193(14):3490-6. doi: 10.1128/JB.00203-11. Epub 2011 May 13.


The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut.

Betts-Hampikian HJ, Fields KA.

Front Microbiol. 2010 Oct 19;1:114. doi: 10.3389/fmicb.2010.00114. eCollection 2010.


Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development.

Hower S, Wolf K, Fields KA.

Mol Microbiol. 2009 Jun;72(6):1423-37. doi: 10.1111/j.1365-2958.2009.06732.x. Epub 2009 May 15.


A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1.

Wolf K, Plano GV, Fields KA.

Cell Microbiol. 2009 May;11(5):769-79. doi: 10.1111/j.1462-5822.2009.01290.x. Epub 2009 Jan 21.


Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal.

Betts HJ, Wolf K, Fields KA.

Curr Opin Microbiol. 2009 Feb;12(1):81-7. doi: 10.1016/j.mib.2008.11.009. Epub 2009 Jan 8. Review.


Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis.

Betts HJ, Twiggs LE, Sal MS, Wyrick PB, Fields KA.

J Bacteriol. 2008 Mar;190(5):1680-90. doi: 10.1128/JB.01671-07. Epub 2007 Dec 28.


Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model.

Chellas-Géry B, Linton CN, Fields KA.

Cell Microbiol. 2007 Oct;9(10):2417-30. Epub 2007 May 28.


Ocular adnexal lymphoma: a clinicopathologic study of a large cohort of patients with no evidence for an association with Chlamydia psittaci.

Rosado MF, Byrne GE Jr, Ding F, Fields KA, Ruiz P, Dubovy SR, Walker GR, Markoe A, Lossos IS.

Blood. 2006 Jan 15;107(2):467-72. Epub 2005 Sep 15.


Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin.

Clifton DR, Dooley CA, Grieshaber SS, Carabeo RA, Fields KA, Hackstadt T.

Infect Immun. 2005 Jul;73(7):3860-8.


A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin.

Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T.

Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10166-71. Epub 2004 Jun 15.


Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development.

Fields KA, Mead DJ, Dooley CA, Hackstadt T.

Mol Microbiol. 2003 May;48(3):671-83.


The chlamydial inclusion: escape from the endocytic pathway.

Fields KA, Hackstadt T.

Annu Rev Cell Dev Biol. 2002;18:221-45. Epub 2002 Apr 2. Review.


Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.

Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T.

Mol Microbiol. 2000 Aug;37(4):913-25.


Skin breakthroughs in the year 2000.

Fields KA.

Int J Fertil Womens Med. 2000 Mar-Apr;45(2):175-81. Review.


Virulence role of V antigen of Yersinia pestis at the bacterial surface.

Fields KA, Nilles ML, Cowan C, Straley SC.

Infect Immun. 1999 Oct;67(10):5395-408.


Failure to detect binding of LcrH to the V antigen of Yersinia pestis.

Fields KA, Williams AW, Straley SC.

Infect Immun. 1997 Sep;65(9):3954-7.


Regulation by Ca2+ in the Yersinia low-Ca2+ response.

Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA.

Mol Microbiol. 1993 Jun;8(6):1005-10. Review.


Supplemental Content

Loading ...
Support Center