Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61

1.

Successful use of an artificial placenta to support extremely preterm ovine fetuses at the border of viability.

Usuda H, Watanabe S, Saito M, Sato S, Musk GC, Fee ME, Carter S, Kumagai Y, Takahashi T, Kawamura MS, Hanita T, Kure S, Yaegashi N, Newnham JP, Kemp MW.

Am J Obstet Gynecol. 2019 Jul;221(1):69.e1-69.e17. doi: 10.1016/j.ajog.2019.03.001. Epub 2019 Mar 7.

PMID:
30853365
2.

Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience.

Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, Fee MS.

Elife. 2019 Feb 5;8. pii: e38471. doi: 10.7554/eLife.38471.

3.

Building a state space for song learning.

Mackevicius EL, Fee MS.

Curr Opin Neurobiol. 2018 Apr;49:59-68. doi: 10.1016/j.conb.2017.12.001. Epub 2017 Dec 18. Review.

PMID:
29268193
4.

Computational training for the next generation of neuroscientists.

Goldman MS, Fee MS.

Curr Opin Neurobiol. 2017 Oct;46:25-30. doi: 10.1016/j.conb.2017.06.007. Epub 2017 Jul 22.

PMID:
28738240
5.

Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations.

Danish HH, Aronov D, Fee MS.

PLoS One. 2017 Jun 15;12(6):e0169568. doi: 10.1371/journal.pone.0169568. eCollection 2017.

6.

Rhythmic Continuous-Time Coding in the Songbird Analog of Vocal Motor Cortex.

Lynch GF, Okubo TS, Hanuschkin A, Hahnloser RH, Fee MS.

Neuron. 2016 May 18;90(4):877-92. doi: 10.1016/j.neuron.2016.04.021.

7.

Growth and splitting of neural sequences in songbird vocal development.

Okubo TS, Mackevicius EL, Payne HL, Lynch GF, Fee MS.

Nature. 2015 Dec 17;528(7582):352-7. doi: 10.1038/nature15741. Epub 2015 Nov 30.

8.

In vivo recording of single-unit activity during singing in zebra finches.

Okubo TS, Mackevicius EL, Fee MS.

Cold Spring Harb Protoc. 2014 Oct 23;2014(12):1273-83. doi: 10.1101/pdb.prot084624.

9.

A role for descending auditory cortical projections in songbird vocal learning.

Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS.

Elife. 2014 Jun 16;3. doi: 10.7554/eLife.02152.

10.

An automated procedure for evaluating song imitation.

Mandelblat-Cerf Y, Fee MS.

PLoS One. 2014 May 8;9(5):e96484. doi: 10.1371/journal.pone.0096484. eCollection 2014.

11.

The role of efference copy in striatal learning.

Fee MS.

Curr Opin Neurobiol. 2014 Apr;25:194-200. doi: 10.1016/j.conb.2014.01.012. Epub 2014 Feb 21. Review.

12.

Basal ganglia output to the thalamus: still a paradox.

Goldberg JH, Farries MA, Fee MS.

Trends Neurosci. 2013 Dec;36(12):695-705. doi: 10.1016/j.tins.2013.09.001. Epub 2013 Nov 2. Review.

13.

Natural changes in brain temperature underlie variations in song tempo during a mating behavior.

Aronov D, Fee MS.

PLoS One. 2012;7(10):e47856. doi: 10.1371/journal.pone.0047856. Epub 2012 Oct 24.

14.

Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions.

Fee MS.

Front Neural Circuits. 2012 Jun 27;6:38. doi: 10.3389/fncir.2012.00038. eCollection 2012.

15.

Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds.

Goldberg JH, Farries MA, Fee MS.

J Neurophysiol. 2012 Sep;108(5):1403-29. doi: 10.1152/jn.00056.2012. Epub 2012 Jun 6.

16.

A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds.

Goldberg JH, Fee MS.

Nat Neurosci. 2012 Feb 12;15(4):620-7. doi: 10.1038/nn.3047.

17.

Wandering neuronal migration in the postnatal vertebrate forebrain.

Scott BB, Gardner T, Ji N, Fee MS, Lois C.

J Neurosci. 2012 Jan 25;32(4):1436-46. doi: 10.1523/JNEUROSCI.2145-11.2012.

18.

Two distinct modes of forebrain circuit dynamics underlie temporal patterning in the vocalizations of young songbirds.

Aronov D, Veit L, Goldberg JH, Fee MS.

J Neurosci. 2011 Nov 9;31(45):16353-68. doi: 10.1523/JNEUROSCI.3009-11.2011.

19.

A hypothesis for basal ganglia-dependent reinforcement learning in the songbird.

Fee MS, Goldberg JH.

Neuroscience. 2011 Dec 15;198:152-70. doi: 10.1016/j.neuroscience.2011.09.069. Epub 2011 Oct 13. Review. Erratum in: Neuroscience. 2013 Dec 26;255:301.

20.

Control of vocal and respiratory patterns in birdsong: dissection of forebrain and brainstem mechanisms using temperature.

Andalman AS, Foerster JN, Fee MS.

PLoS One. 2011;6(9):e25461. doi: 10.1371/journal.pone.0025461. Epub 2011 Sep 28.

21.

New methods for localizing and manipulating neuronal dynamics in behaving animals.

Fee MS, Long MA.

Curr Opin Neurobiol. 2011 Oct;21(5):693-700. doi: 10.1016/j.conb.2011.06.010. Epub 2011 Jul 15. Review.

22.

Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.

Veit L, Aronov D, Fee MS.

J Neurophysiol. 2011 Oct;106(4):1747-65. doi: 10.1152/jn.00247.2011. Epub 2011 Jun 22.

23.

Changes in the neural control of a complex motor sequence during learning.

Ölveczky BP, Otchy TM, Goldberg JH, Aronov D, Fee MS.

J Neurophysiol. 2011 Jul;106(1):386-97. doi: 10.1152/jn.00018.2011. Epub 2011 May 4.

24.

Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia.

Goldberg JH, Fee MS.

J Neurophysiol. 2011 Jun;105(6):2729-39. doi: 10.1152/jn.00823.2010. Epub 2011 Mar 23.

25.

Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device.

Aronov D, Fee MS.

J Neurosci Methods. 2011 Apr 15;197(1):32-47. doi: 10.1016/j.jneumeth.2011.01.024. Epub 2011 Feb 1.

26.
27.

Support for a synaptic chain model of neuronal sequence generation.

Long MA, Jin DZ, Fee MS.

Nature. 2010 Nov 18;468(7322):394-9. doi: 10.1038/nature09514. Epub 2010 Oct 24.

28.
29.

Singing-related neural activity distinguishes four classes of putative striatal neurons in the songbird basal ganglia.

Goldberg JH, Fee MS.

J Neurophysiol. 2010 Apr;103(4):2002-14. doi: 10.1152/jn.01038.2009. Epub 2010 Jan 27.

30.

A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors.

Andalman AS, Fee MS.

Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12518-23. doi: 10.1073/pnas.0903214106. Epub 2009 Jul 13.

31.

Wireless neural stimulation in freely behaving small animals.

Arfin SK, Long MA, Fee MS, Sarpeshkar R.

J Neurophysiol. 2009 Jul;102(1):598-605. doi: 10.1152/jn.00017.2009. Epub 2009 Apr 22.

32.

Using temperature to analyse temporal dynamics in the songbird motor pathway.

Long MA, Fee MS.

Nature. 2008 Nov 13;456(7219):189-94. doi: 10.1038/nature07448.

33.

Low-power circuits for brain-machine interfaces.

Sarpeshkar R, Wattanapanitch W, Arfin SK, Rapoport BI, Mandal S, Baker MW, Fee MS, Musallam S, Andersen RA.

IEEE Trans Biomed Circuits Syst. 2008 Sep;2(3):173-83. doi: 10.1109/TBCAS.2008.2003198.

PMID:
23852967
34.

A specialized forebrain circuit for vocal babbling in the juvenile songbird.

Aronov D, Andalman AS, Fee MS.

Science. 2008 May 2;320(5876):630-4. doi: 10.1126/science.1155140.

35.

Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances.

Fiete IR, Fee MS, Seung HS.

J Neurophysiol. 2007 Oct;98(4):2038-57. Epub 2007 Jul 25.

36.

Singing-related activity of identified HVC neurons in the zebra finch.

Kozhevnikov AA, Fee MS.

J Neurophysiol. 2007 Jun;97(6):4271-83. Epub 2006 Dec 20.

37.

Sleep-related spike bursts in HVC are driven by the nucleus interface of the nidopallium.

Hahnloser RH, Fee MS.

J Neurophysiol. 2007 Jan;97(1):423-35. Epub 2006 Sep 27.

38.

Sleep-related neural activity in a premotor and a basal-ganglia pathway of the songbird.

Hahnloser RH, Kozhevnikov AA, Fee MS.

J Neurophysiol. 2006 Aug;96(2):794-812. Epub 2006 Feb 22.

39.

Vocal experimentation in the juvenile songbird requires a basal ganglia circuit.

Olveczky BP, Andalman AS, Fee MS.

PLoS Biol. 2005 May;3(5):e153. Epub 2005 Mar 29.

40.

Ensemble coding of vocal control in birdsong.

Leonardo A, Fee MS.

J Neurosci. 2005 Jan 19;25(3):652-61.

41.

Novel approaches to monitor and manipulate single neurons in vivo.

Brecht M, Fee MS, Garaschuk O, Helmchen F, Margrie TW, Svoboda K, Osten P.

J Neurosci. 2004 Oct 20;24(42):9223-7. Review. No abstract available.

42.

Neural mechanisms of vocal sequence generation in the songbird.

Fee MS, Kozhevnikov AA, Hahnloser RH.

Ann N Y Acad Sci. 2004 Jun;1016:153-70. Review.

PMID:
15313774
43.

Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong.

Fiete IR, Hahnloser RH, Fee MS, Seung HS.

J Neurophysiol. 2004 Oct;92(4):2274-82. Epub 2004 Apr 7.

44.

Encoding pheromonal signals in the accessory olfactory bulb of behaving mice.

Luo M, Fee MS, Katz LC.

Science. 2003 Feb 21;299(5610):1196-201.

45.

Measurement of the linear and nonlinear mechanical properties of the oscine syrinx: implications for function.

Fee MS.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Dec;188(11-12):829-39. Epub 2002 Oct 31.

PMID:
12471484
46.

An ultra-sparse code underlies the generation of neural sequences in a songbird.

Hahnloser RH, Kozhevnikov AA, Fee MS.

Nature. 2002 Sep 5;419(6902):65-70. Erratum in: Nature. 2003 Jan 16;421(6920):294.

PMID:
12214232
47.

The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird.

Fee MS, Shraiman B, Pesaran B, Mitra PP.

Nature. 1998 Sep 3;395(6697):67-71.

PMID:
12071206
48.

Miniature motorized microdrive and commutator system for chronic neural recording in small animals.

Fee MS, Leonardo A.

J Neurosci Methods. 2001 Dec 15;112(2):83-94.

PMID:
11716944
49.

Supplemental Content

Loading ...
Support Center