Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 124

1.

Dickeya undicola sp. nov., a novel species for pectinolytic isolates from surface waters in Europe and Asia.

Oulghazi S, Pédron J, Cigna J, Lau YY, Moumni M, Van Gijsegem F, Chan KG, Faure D.

Int J Syst Evol Microbiol. 2019 Jun 5. doi: 10.1099/ijsem.0.003497. [Epub ahead of print]

PMID:
31166160
2.

Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not In Planta.

Rondeau M, Esmaeel Q, Crouzet J, Blin P, Gosselin I, Sarazin C, Pernes M, Beaugrand J, Wisniewski-Dyé F, Vial L, Faure D, Clément C, Ait Barka E, Jacquard C, Sanchez L.

Appl Environ Microbiol. 2019 May 16;85(11). pii: e02670-18. doi: 10.1128/AEM.02670-18. Print 2019 Jun 1.

PMID:
30902863
3.

Integrative and deconvolution omics approaches to uncover the Agrobacterium tumefaciens lifestyle in plant tumors.

Gonzalez-Mula A, Torres M, Faure D.

Plant Signal Behav. 2019;14(3):e1581562. doi: 10.1080/15592324.2019.1581562. Epub 2019 Feb 17.

PMID:
30774017
4.

Common and distinctive adaptive traits expressed in Dickeya dianthicola and Dickeya solani pathogens when exploiting potato plant host.

Raoul des Essarts Y, Pédron J, Blin P, Van Dijk E, Faure D, Van Gijsegem F.

Environ Microbiol. 2019 Mar;21(3):1004-1018. doi: 10.1111/1462-2920.14519. Epub 2019 Jan 27.

PMID:
30618082
5.

Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium.

Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG, Faure D.

Int J Syst Evol Microbiol. 2019 Feb;69(2):470-475. doi: 10.1099/ijsem.0.003180. Epub 2019 Jan 2.

PMID:
30601112
6.

The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites.

Gonzalez-Mula A, Lachat J, Mathias L, Naquin D, Lamouche F, Mergaert P, Faure D.

New Phytol. 2019 Apr;222(1):455-467. doi: 10.1111/nph.15598. Epub 2019 Jan 3.

PMID:
30447163
7.

Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan.

Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST, Khan SH, Faure D.

Int J Syst Evol Microbiol. 2018 Nov;68(11):3551-3556. doi: 10.1099/ijsem.0.003029. Epub 2018 Sep 21.

PMID:
30239330
8.

First Report of Dickeya dianthicola Causing Blackleg Disease on Potato Plants in Pakistan.

Sarfraz S, Riaz K, Oulghazi S, Cigna J, Alam MW, Dessaux Y, Faure D.

Plant Dis. 2018 Aug 3:PDIS04180551PDN. doi: 10.1094/PDIS-04-18-0551-PDN. [Epub ahead of print] No abstract available.

9.

Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems.

Faure D, Simon JC, Heulin T.

New Phytol. 2018 Jun;218(4):1321-1324. doi: 10.1111/nph.15199. No abstract available.

10.

Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant.

González-Mula A, Lang J, Grandclément C, Naquin D, Ahmar M, Soulère L, Queneau Y, Dessaux Y, Faure D.

New Phytol. 2018 Jul;219(1):350-362. doi: 10.1111/nph.15164. Epub 2018 Apr 27.

PMID:
29701262
11.

Complete Chromosome and Plasmid Sequences of Two Plant Pathogens, Dickeya solani Strains D s0432-1 and PPO 9019.

Khayi S, Blin P, Chong TM, Chan KG, Faure D.

Genome Announc. 2018 Apr 26;6(17). pii: e00233-18. doi: 10.1128/genomeA.00233-18.

12.

Quorum Sensing and Quorum Quenching in Agrobacterium: A "Go/No Go System"?

Dessaux Y, Faure D.

Genes (Basel). 2018 Apr 16;9(4). pii: E210. doi: 10.3390/genes9040210. Review.

13.

Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats.

Dessaux Y, Faure D.

Curr Top Microbiol Immunol. 2018;418:55-86. doi: 10.1007/82_2018_83. Review.

PMID:
29556826
14.

Complete Genome Sequences of the Plant Pathogens Dickeya solani RNS 08.23.3.1.A and Dickeya dianthicola RNS04.9.

Khayi S, Blin P, Chong TM, Robic K, Chan KG, Faure D.

Genome Announc. 2018 Jan 25;6(4). pii: e01447-17. doi: 10.1128/genomeA.01447-17.

15.

Structural basis for high specificity of octopine binding in the plant pathogen Agrobacterium tumefaciens.

Vigouroux A, El Sahili A, Lang J, Aumont-Nicaise M, Dessaux Y, Faure D, Moréra S.

Sci Rep. 2017 Dec 21;7(1):18033. doi: 10.1038/s41598-017-18243-8.

16.

A gapA PCR-sequencing Assay for Identifying the Dickeya and Pectobacterium Potato Pathogens.

Cigna J, Dewaegeneire P, Beury A, Gobert V, Faure D.

Plant Dis. 2017 Jul;101(7):1278-1282. doi: 10.1094/PDIS-12-16-1810-RE. Epub 2017 May 3.

PMID:
30682965
17.

Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5.2, a vineyard soil isolate.

Chong TM, Chen JW, See-Too WS, Yu CY, Ang GY, Lim YL, Yin WF, Grandclément C, Faure D, Dessaux Y, Chan KG.

AMB Express. 2017 Dec;7(1):138. doi: 10.1186/s13568-017-0437-7. Epub 2017 Jun 26.

18.

Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders.

Tannières M, Lang J, Barnier C, Shykoff JA, Faure D.

Sci Rep. 2017 Jan 5;7:40126. doi: 10.1038/srep40126.

19.

Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222T.

Khayi S, Blin P, Chong TM, Chan KG, Faure D.

Stand Genomic Sci. 2016 Nov 29;11:87. eCollection 2016.

20.

Fitness costs restrict niche expansion by generalist niche-constructing pathogens.

Lang J, Vigouroux A, El Sahili A, Kwasiborski A, Aumont-Nicaise M, Dessaux Y, Shykoff JA, Moréra S, Faure D.

ISME J. 2017 Feb;11(2):374-385. doi: 10.1038/ismej.2016.137. Epub 2016 Nov 1.

21.

Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

Chong TM, Yin WF, Chen JW, Mondy S, Grandclément C, Faure D, Dessaux Y, Chan KG.

AMB Express. 2016 Dec;6(1):95. doi: 10.1186/s13568-016-0269-x. Epub 2016 Oct 12.

22.

Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov.

Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, Faure D.

Int J Syst Evol Microbiol. 2016 Dec;66(12):5379-5383. doi: 10.1099/ijsem.0.001524. Epub 2016 Sep 26.

PMID:
27692046
23.

Structural Basis for High Specificity of Amadori Compound and Mannopine Opine Binding in Bacterial Pathogens.

Marty L, Vigouroux A, Aumont-Nicaise M, Dessaux Y, Faure D, Moréra S.

J Biol Chem. 2016 Oct 21;291(43):22638-22649. Epub 2016 Sep 8.

24.

Transcriptome analysis revealed that a quorum sensing system regulates the transfer of the pAt megaplasmid in Agrobacterium tumefaciens.

Mhedbi-Hajri N, Yahiaoui N, Mondy S, Hue N, Pélissier F, Faure D, Dessaux Y.

BMC Genomics. 2016 Aug 20;17:661. doi: 10.1186/s12864-016-3007-5.

25.

Pseudomonas lini Strain ZBG1 Revealed Carboxylic Acid Utilization and Copper Resistance Features Required for Adaptation to Vineyard Soil Environment: A Draft Genome Analysis.

Chan KG, Chong TM, Adrian TG, Kher HL, Grandclément C, Faure D, Yin WF, Dessaux Y, Hong KW.

J Genomics. 2016 Aug 5;4:26-8. doi: 10.7150/jgen.16146. eCollection 2016.

26.

Plant GABA:proline ratio modulates dissemination of the virulence Ti plasmid within the Agrobacterium tumefaciens hosted population.

Lang J, Faure D.

Plant Signal Behav. 2016 May 3;11(5):e1178440. doi: 10.1080/15592324.2016.1178440.

27.

Engineering the Rhizosphere.

Dessaux Y, Grandclément C, Faure D.

Trends Plant Sci. 2016 Mar;21(3):266-278. doi: 10.1016/j.tplants.2016.01.002. Epub 2016 Jan 23. Review.

PMID:
26818718
28.

The plant GABA signaling downregulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid.

Lang J, Gonzalez-Mula A, Taconnat L, Clement G, Faure D.

New Phytol. 2016 May;210(3):974-83. doi: 10.1111/nph.13813. Epub 2015 Dec 30.

29.

Whole-Genome Sequence of Stenotrophomonas maltophilia ZBG7B Reveals Its Biotechnological Potential.

Chan KG, Chong TM, Adrian TG, Kher HL, Hong KW, Grandclément C, Faure D, Yin WF, Dessaux Y.

Genome Announc. 2015 Dec 10;3(6). pii: e01442-15. doi: 10.1128/genomeA.01442-15.

30.

Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation.

El Sahili A, Kwasiborski A, Mothe N, Velours C, Legrand P, Moréra S, Faure D.

PLoS One. 2015 Nov 10;10(11):e0141718. doi: 10.1371/journal.pone.0141718. eCollection 2015.

31.

Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola.

Raoul des Essarts Y, Cigna J, Quêtu-Laurent A, Caron A, Munier E, Beury-Cirou A, Hélias V, Faure D.

Appl Environ Microbiol. 2015 Oct 23;82(1):268-78. doi: 10.1128/AEM.02525-15. Print 2016 Jan 1.

32.

Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani.

Khayi S, Blin P, Pédron J, Chong TM, Chan KG, Moumni M, Hélias V, Van Gijsegem F, Faure D.

BMC Genomics. 2015 Oct 14;16:788. doi: 10.1186/s12864-015-1997-z.

33.

Quorum quenching: role in nature and applied developments.

Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D.

FEMS Microbiol Rev. 2016 Jan;40(1):86-116. doi: 10.1093/femsre/fuv038. Epub 2015 Oct 1. Review.

PMID:
26432822
34.

Environmental microbiology as a mosaic of explored ecosystems and issues.

Faure D, Bonin P, Duran R; Microbial Ecology EC2CO consortium.

Environ Sci Pollut Res Int. 2015 Sep;22(18):13577-98. doi: 10.1007/s11356-015-5164-5. Epub 2015 Aug 27. Review.

PMID:
26310700
35.

A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens.

El Sahili A, Li SZ, Lang J, Virus C, Planamente S, Ahmar M, Guimaraes BG, Aumont-Nicaise M, Vigouroux A, Soulère L, Reader J, Queneau Y, Faure D, Moréra S.

PLoS Pathog. 2015 Aug 5;11(8):e1005071. doi: 10.1371/journal.ppat.1005071. eCollection 2015 Aug.

36.

Environmental microbiology reveals the Earth secret life.

Faure D, Bonin P, Duran R.

Environ Sci Pollut Res Int. 2015 Sep;22(18):13573-6. doi: 10.1007/s11356-015-4968-7. Epub 2015 Jul 11. No abstract available.

PMID:
26162441
37.

Genome Sequence of the Potato Plant Pathogen Dickeya dianthicola Strain RNS04.9.

Raoul des Essarts Y, Mondy S, Hélias V, Faure D.

Genome Announc. 2015 Jun 4;3(3). pii: e00581-15. doi: 10.1128/genomeA.00581-15.

38.

Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid.

Roy J, Oger C, Thireau J, Roussel J, Mercier-Touzet O, Faure D, Pinot E, Farah C, Taber DF, Cristol JP, Lee JC, Lacampagne A, Galano JM, Durand T, Le Guennec JY.

Free Radic Biol Med. 2015 Sep;86:269-78. doi: 10.1016/j.freeradbiomed.2015.04.014. Epub 2015 Apr 21.

PMID:
25911196
39.

Next-generation sequencing propels environmental genomics to the front line of research.

Joly D, Faure D.

Heredity (Edinb). 2015 May;114(5):429-30. doi: 10.1038/hdy.2015.23. No abstract available.

40.

Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences.

Faure D, Joly D.

Genetica. 2015 Apr;143(2):129-32. doi: 10.1007/s10709-015-9831-8. Epub 2015 Mar 4.

PMID:
25736916
41.

Core genome and plasmidome of the quorum-quenching bacterium Rhodococcus erythropolis.

Kwasiborski A, Mondy S, Chong TM, Chan KG, Beury-Cirou A, Faure D.

Genetica. 2015 Apr;143(2):253-61. doi: 10.1007/s10709-015-9827-4. Epub 2015 Feb 13.

PMID:
25676013
42.

Draft Genome Sequences of Pseudomonas fluorescens Strains PA4C2 and PA3G8 and Pseudomonas putida PA14H7, Three Biocontrol Bacteria against Dickeya Phytopathogens.

Cigna J, Raoul des Essarts Y, Mondy S, Hélias V, Beury-Cirou A, Faure D.

Genome Announc. 2015 Jan 29;3(1). pii: e01503-14. doi: 10.1128/genomeA.01503-14.

43.

Draft Genome Sequences of the Three Pectobacterium-Antagonistic Bacteria Pseudomonas brassicacearum PP1-210F and PA1G7 and Bacillus simplex BA2H3.

Khayi S, Raoul des Essarts Y, Mondy S, Moumni M, Hélias V, Beury-Cirou A, Faure D.

Genome Announc. 2015 Jan 29;3(1). pii: e01497-14. doi: 10.1128/genomeA.01497-14.

44.

Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum.

Kwasiborski A, Mondy S, Chong TM, Barbey C, Chan KG, Beury-Cirou A, Latour X, Faure D.

Heredity (Edinb). 2015 May;114(5):476-84. doi: 10.1038/hdy.2014.121. Epub 2015 Jan 14.

45.

Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

Lang J, Vigouroux A, Planamente S, El Sahili A, Blin P, Aumont-Nicaise M, Dessaux Y, Moréra S, Faure D.

PLoS Pathog. 2014 Oct 9;10(10):e1004444. doi: 10.1371/journal.ppat.1004444. eCollection 2014 Oct.

46.

Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes.

Khayi S, Raoul des Essarts Y, Quêtu-Laurent A, Moumni M, Hélias V, Faure D.

Genetica. 2015 Apr;143(2):241-52. doi: 10.1007/s10709-014-9793-2. Epub 2014 Oct 9.

PMID:
25297844
47.

An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations.

Mondy S, Lenglet A, Beury-Cirou A, Libanga C, Ratet P, Faure D, Dessaux Y.

Mol Ecol. 2014 Oct;23(19):4846-61. doi: 10.1111/mec.12890.

PMID:
25145455
48.
49.

Genome Sequence of the Quorum-Quenching Rhodococcus erythropolis Strain R138.

Kwasiborski A, Mondy S, Beury-Cirou A, Faure D.

Genome Announc. 2014 Mar 27;2(2). pii: e00224-14. doi: 10.1128/genomeA.00224-14.

50.

Functions and regulation of quorum-sensing in Agrobacterium tumefaciens.

Lang J, Faure D.

Front Plant Sci. 2014 Jan 31;5:14. doi: 10.3389/fpls.2014.00014. eCollection 2014. Review.

Supplemental Content

Support Center