Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Effects of aging on mechanical efficiency and muscle activation during level and uphill walking.

Ortega JD, Farley CT.

J Electromyogr Kinesiol. 2015 Feb;25(1):193-8. doi: 10.1016/j.jelekin.2014.09.003. Epub 2014 Sep 16.

2.

Energetically optimal stride frequency in running: the effects of incline and decline.

Snyder KL, Farley CT.

J Exp Biol. 2011 Jun 15;214(Pt 12):2089-95. doi: 10.1242/jeb.053157.

3.

Influence of zolpidem and sleep inertia on balance and cognition during nighttime awakening: a randomized placebo-controlled trial.

Frey DJ, Ortega JD, Wiseman C, Farley CT, Wright KP Jr.

J Am Geriatr Soc. 2011 Jan;59(1):73-81. doi: 10.1111/j.1532-5415.2010.03229.x.

PMID:
21226678
4.

Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping.

van der Krogt MM, de Graaf WW, Farley CT, Moritz CT, Richard Casius LJ, Bobbert MF.

J Appl Physiol (1985). 2009 Sep;107(3):801-8. doi: 10.1152/japplphysiol.91189.2008. Epub 2009 Jul 9.

5.

Effects of aging and arm swing on the metabolic cost of stability in human walking.

Ortega JD, Fehlman LA, Farley CT.

J Biomech. 2008 Dec 5;41(16):3303-8. doi: 10.1016/j.jbiomech.2008.06.039. Epub 2008 Sep 23.

6.

Individual limb work does not explain the greater metabolic cost of walking in elderly adults.

Ortega JD, Farley CT.

J Appl Physiol (1985). 2007 Jun;102(6):2266-73. Epub 2007 Mar 15.

7.
8.

Minimizing center of mass vertical movement increases metabolic cost in walking.

Ortega JD, Farley CT.

J Appl Physiol (1985). 2005 Dec;99(6):2099-107. Epub 2005 Jul 28.

10.

Independent metabolic costs of supporting body weight and accelerating body mass during walking.

Grabowski A, Farley CT, Kram R.

J Appl Physiol (1985). 2005 Feb;98(2):579-83.

11.
12.

Muscle mechanical advantage of human walking and running: implications for energy cost.

Biewener AA, Farley CT, Roberts TJ, Temaner M.

J Appl Physiol (1985). 2004 Dec;97(6):2266-74. Epub 2004 Jul 16.

13.

Passive dynamics change leg mechanics for an unexpected surface during human hopping.

Moritz CT, Farley CT.

J Appl Physiol (1985). 2004 Oct;97(4):1313-22. Epub 2004 May 28.

14.

Neuromuscular changes for hopping on a range of damped surfaces.

Moritz CT, Greene SM, Farley CT.

J Appl Physiol (1985). 2004 May;96(5):1996-2004. Epub 2003 Dec 19.

15.

Human hopping on damped surfaces: strategies for adjusting leg mechanics.

Moritz CT, Farley CT.

Proc Biol Sci. 2003 Aug 22;270(1525):1741-6.

16.

How animals move: an integrative view.

Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S.

Science. 2000 Apr 7;288(5463):100-6. Review.

PMID:
10753108
17.

Soleus H-reflex gain in humans walking and running under simulated reduced gravity.

Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P.

J Physiol. 2001 Jan 1;530(Pt 1):167-80.

18.

Runners adjust leg stiffness for their first step on a new running surface.

Ferris DP, Liang K, Farley CT.

J Biomech. 1999 Aug;32(8):787-94.

PMID:
10433420
19.

Thomas A. McMahon (1943-99)

Farley CT.

Nature. 1999 Apr 15;398(6728):566. No abstract available.

PMID:
10217138
20.

Leg stiffness primarily depends on ankle stiffness during human hopping.

Farley CT, Morgenroth DC.

J Biomech. 1999 Mar;32(3):267-73.

PMID:
10093026
21.

Determinants of the center of mass trajectory in human walking and running.

Lee CR, Farley CT.

J Exp Biol. 1998 Nov;201(Pt 21):2935-44.

22.

Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses.

Farley CT, Houdijk HH, Van Strien C, Louie M.

J Appl Physiol (1985). 1998 Sep;85(3):1044-55.

23.

Locomotion. Just skip it.

Farley CT.

Nature. 1998 Aug 20;394(6695):721-3. No abstract available.

PMID:
9723612
24.

Biomechanics of walking and running: center of mass movements to muscle action.

Farley CT, Ferris DP.

Exerc Sport Sci Rev. 1998;26:253-85. Review. No abstract available.

PMID:
9696992
25.

Running in the real world: adjusting leg stiffness for different surfaces.

Ferris DP, Louie M, Farley CT.

Proc Biol Sci. 1998 Jun 7;265(1400):989-94.

26.

Low cost of locomotion in the banded Gecko: a test of the nocturnality hypothesis.

Autumn K, Farley CT, Emshwiller M, Full RJ.

Physiol Zool. 1997 Nov-Dec;70(6):660-9.

PMID:
9361140
27.

Maximum speed and mechanical power output in lizards.

Farley CT.

J Exp Biol. 1997 Aug;200(Pt 16):2189-95.

28.

Mechanics of locomotion in lizards.

Farley CT, Ko TC.

J Exp Biol. 1997 Aug;200(Pt 16):2177-88.

29.

Interaction of leg stiffness and surfaces stiffness during human hopping.

Ferris DP, Farley CT.

J Appl Physiol (1985). 1997 Jan;82(1):15-22; discussion 13-4.

30.

Leg stiffness and stride frequency in human running.

Farley CT, González O.

J Biomech. 1996 Feb;29(2):181-6.

PMID:
8849811
31.

Running springs: speed and animal size.

Farley CT, Glasheen J, McMahon TA.

J Exp Biol. 1993 Dec;185:71-86.

32.

Energetics of walking and running: insights from simulated reduced-gravity experiments.

Farley CT, McMahon TA.

J Appl Physiol (1985). 1992 Dec;73(6):2709-12.

PMID:
1490989
33.

Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits.

Farley CT, Blickhan R, Saito J, Taylor CR.

J Appl Physiol (1985). 1991 Dec;71(6):2127-32.

PMID:
1778902
34.

A mechanical trigger for the trot-gallop transition in horses.

Farley CT, Taylor CR.

Science. 1991 Jul 19;253(5017):306-8.

PMID:
1857965

Supplemental Content

Loading ...
Support Center