Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Identification of osimertinib-resistant EGFR L792 mutations by cfDNA sequencing: oncogenic activity assessment and prevalence in large cfDNA cohort.

Fairclough SR, Kiedrowski LA, Lin JJ, Zelichov O, Tarcic G, Stinchcombe TE, Odegaard JI, Lanman RB, Shaw AT, Nagy RJ.

Exp Hematol Oncol. 2019 Oct 11;8:24. doi: 10.1186/s40164-019-0148-7. eCollection 2019.

2.

Validation of Microsatellite Instability Detection Using a Comprehensive Plasma-Based Genotyping Panel.

Willis J, Lefterova MI, Artyomenko A, Kasi PM, Nakamura Y, Mody K, Catenacci DVT, Fakih M, Barbacioru C, Zhao J, Sikora M, Fairclough SR, Lee H, Kim KM, Kim ST, Kim J, Gavino D, Benavides M, Peled N, Nguyen T, Cusnir M, Eskander RN, Azzi G, Yoshino T, Banks KC, Raymond VM, Lanman RB, Chudova DI, Talasaz A, Kopetz S, Lee J, Odegaard JI.

Clin Cancer Res. 2019 Dec 1;25(23):7035-7045. doi: 10.1158/1078-0432.CCR-19-1324. Epub 2019 Aug 4.

PMID:
31383735
3.

The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients.

Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, Gandara DR, Mack PC, Odegaard JI, Nagy RJ, Baca AM, Eltoukhy H, Chudova DI, Lanman RB, Talasaz A.

Clin Cancer Res. 2018 Aug 1;24(15):3528-3538. doi: 10.1158/1078-0432.CCR-17-3837. Epub 2018 May 18.

4.

Validation of a Plasma-Based Comprehensive Cancer Genotyping Assay Utilizing Orthogonal Tissue- and Plasma-Based Methodologies.

Odegaard JI, Vincent JJ, Mortimer S, Vowles JV, Ulrich BC, Banks KC, Fairclough SR, Zill OA, Sikora M, Mokhtari R, Abdueva D, Nagy RJ, Lee CE, Kiedrowski LA, Paweletz CP, Eltoukhy H, Lanman RB, Chudova DI, Talasaz A.

Clin Cancer Res. 2018 Aug 1;24(15):3539-3549. doi: 10.1158/1078-0432.CCR-17-3831. Epub 2018 Apr 24.

5.

Discrimination of Germline EGFR T790M Mutations in Plasma Cell-Free DNA Allows Study of Prevalence Across 31,414 Cancer Patients.

Hu Y, Alden RS, Odegaard JI, Fairclough SR, Chen R, Heng J, Feeney N, Nagy RJ, Shah J, Ulrich B, Gutierrez M, Lanman RB, Garber JE, Paweletz CP, Oxnard GR.

Clin Cancer Res. 2017 Dec 1;23(23):7351-7359. doi: 10.1158/1078-0432.CCR-17-1745. Epub 2017 Sep 25.

6.

Insights into the origin of metazoan filopodia and microvilli.

Sebé-Pedrós A, Burkhardt P, Sánchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I.

Mol Biol Evol. 2013 Sep;30(9):2013-23. doi: 10.1093/molbev/mst110. Epub 2013 Jun 14.

7.

Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta.

Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N.

Genome Biol. 2013 Feb 18;14(2):R15. doi: 10.1186/gb-2013-14-2-r15.

8.

A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals.

Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N.

Elife. 2012 Oct 15;1:e00013. doi: 10.7554/eLife.00013.

9.

Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex.

Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N.

Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13046-51. doi: 10.1073/pnas.1120685109. Epub 2012 Jul 25.

10.

Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta.

Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N.

Dev Biol. 2011 Sep 1;357(1):73-82. doi: 10.1016/j.ydbio.2011.06.003. Epub 2011 Jun 12.

11.

Complete genome sequence of Algoriphagus sp. PR1, bacterial prey of a colony-forming choanoflagellate.

Alegado RA, Ferriera S, Nusbaum C, Young SK, Zeng Q, Imamovic A, Fairclough SR, King N.

J Bacteriol. 2011 Mar;193(6):1485-6. doi: 10.1128/JB.01421-10. Epub 2010 Dec 23.

12.

Multicellular development in a choanoflagellate.

Fairclough SR, Dayel MJ, King N.

Curr Biol. 2010 Oct 26;20(20):R875-6. doi: 10.1016/j.cub.2010.09.014. No abstract available.

13.

Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis.

Iwamoto MA, Fairclough SR, Rudge SA, Engebrecht J.

Eukaryot Cell. 2005 Mar;4(3):536-44.

Supplemental Content

Loading ...
Support Center