Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 113

1.

Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors.

Ingram NT, Sampath AP, Fain GL.

J Gen Physiol. 2019 Sep 27. pii: jgp.201912419. doi: 10.1085/jgp.201912419. [Epub ahead of print]

PMID:
31562185
2.

Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells.

Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, Xu T, Yuan L, Sampath AP, Radu RA, Fain GL, Travis GH.

Neuron. 2019 Jun 19;102(6):1172-1183.e5. doi: 10.1016/j.neuron.2019.04.004. Epub 2019 May 2.

PMID:
31056353
3.

The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx.

Wang T, Reingruber J, Woodruff ML, Majumder A, Camarena A, Artemyev NO, Fain GL, Chen J.

J Biol Chem. 2018 Oct 5;293(40):15332-15346. doi: 10.1074/jbc.RA118.004459. Epub 2018 Aug 20.

4.

Role of recoverin in rod photoreceptor light adaptation.

Morshedian A, Woodruff ML, Fain GL.

J Physiol. 2018 Apr 15;596(8):1513-1526. doi: 10.1113/JP275779. Epub 2018 Mar 5.

5.

Cambrian origin of the CYP27C1-mediated vitamin A1-to-A2 switch, a key mechanism of vertebrate sensory plasticity.

Morshedian A, Toomey MB, Pollock GE, Frederiksen R, Enright JM, McCormick SD, Cornwall MC, Fain GL, Corbo JC.

R Soc Open Sci. 2017 Jul 5;4(7):170362. doi: 10.1098/rsos.170362. eCollection 2017 Jul.

6.

Light adaptation and the evolution of vertebrate photoreceptors.

Morshedian A, Fain GL.

J Physiol. 2017 Jul 15;595(14):4947-4960. doi: 10.1113/JP274211. Epub 2017 Jun 1.

7.

Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate.

Kaylor JJ, Xu T, Ingram NT, Tsan A, Hakobyan H, Fain GL, Travis GH.

Nat Commun. 2017 May 4;8(1):16. doi: 10.1038/s41467-017-00018-4.

8.

The evolution of rod photoreceptors.

Morshedian A, Fain GL.

Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). pii: 20160074. doi: 10.1098/rstb.2016.0074. Review.

9.

Why are rods more sensitive than cones?

Ingram NT, Sampath AP, Fain GL.

J Physiol. 2016 Oct 1;594(19):5415-26. doi: 10.1113/JP272556. Epub 2016 Jul 21. Review.

10.

Phototransduction: Making the Chromophore to See Through the Murk.

Fain GL.

Curr Biol. 2015 Dec 7;25(23):R1126-7. doi: 10.1016/j.cub.2015.10.004.

11.

How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.

Reingruber J, Holcman D, Fain GL.

Bioessays. 2015 Nov;37(11):1243-52. doi: 10.1002/bies.201500081. Epub 2015 Sep 10.

12.

Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.

Chen CK, Woodruff ML, Fain GL.

J Gen Physiol. 2015 Mar;145(3):213-24. doi: 10.1085/jgp.201411273. Epub 2015 Feb 9.

13.

Single-photon sensitivity of lamprey rods with cone-like outer segments.

Morshedian A, Fain GL.

Curr Biol. 2015 Feb 16;25(4):484-7. doi: 10.1016/j.cub.2014.12.031. Epub 2015 Feb 5.

14.

Effect of knocking down the insulin receptor on mouse rod responses.

Woodruff ML, Rajala A, Fain GL, Rajala RV.

Sci Rep. 2015 Jan 19;5:7858. doi: 10.1038/srep07858.

15.

Modulation of mouse rod photoreceptor responses by Grb14 protein.

Woodruff ML, Rajala A, Fain GL, Rajala RV.

J Biol Chem. 2014 Jan 3;289(1):358-64. doi: 10.1074/jbc.M113.517045. Epub 2013 Nov 22.

16.

Detection of single photons by toad and mouse rods.

Reingruber J, Pahlberg J, Woodruff ML, Sampath AP, Fain GL, Holcman D.

Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19378-83. doi: 10.1073/pnas.1314030110. Epub 2013 Nov 8.

17.

Modulation of mouse rod response decay by rhodopsin kinase and recoverin.

Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL.

J Neurosci. 2012 Nov 7;32(45):15998-6006. doi: 10.1523/JNEUROSCI.1639-12.2012.

18.

Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment.

Li X, McClellan ME, Tanito M, Garteiser P, Towner R, Bissig D, Berkowitz BA, Fliesler SJ, Woodruff ML, Fain GL, Birch DG, Khan MS, Ash JD, Elliott MH.

J Biol Chem. 2012 May 11;287(20):16424-34. doi: 10.1074/jbc.M112.353763. Epub 2012 Mar 26.

19.

Bleaching of mouse rods: microspectrophotometry and suction-electrode recording.

Nymark S, Frederiksen R, Woodruff ML, Cornwall MC, Fain GL.

J Physiol. 2012 May 15;590(10):2353-64. doi: 10.1113/jphysiol.2012.228627. Epub 2012 Mar 25.

20.

Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase.

Fain GL.

Mol Neurobiol. 2011 Dec;44(3):374-82. doi: 10.1007/s12035-011-8205-1. Epub 2011 Sep 16. Review.

21.

Effect of the ILE86TER mutation in the γ subunit of cGMP phosphodiesterase (PDE6) on rod photoreceptor signaling.

Tsang SH, Woodruff ML, Lin CS, Jacobson BD, Naumann MC, Hsu CW, Davis RJ, Cilluffo MC, Chen J, Fain GL.

Cell Signal. 2012 Jan;24(1):181-8. doi: 10.1016/j.cellsig.2011.08.021. Epub 2011 Sep 8.

22.

Channel modulation and the mechanism of light adaptation in mouse rods.

Chen J, Woodruff ML, Wang T, Concepcion FA, Tranchina D, Fain GL.

J Neurosci. 2010 Dec 1;30(48):16232-40. doi: 10.1523/JNEUROSCI.2868-10.2010.

23.

Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay.

Chen CK, Woodruff ML, Chen FS, Shim H, Cilluffo MC, Fain GL.

J Physiol. 2010 Sep 1;588(Pt 17):3231-41. doi: 10.1113/jphysiol.2010.191221. Epub 2010 Jul 5.

24.

Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments.

Kefalov VJ, Cornwall MC, Fain GL.

Methods Mol Biol. 2010;652:95-114. doi: 10.1007/978-1-60327-325-1_5.

25.

Setting the absolute threshold of vision.

Sampath AP, Fain GL.

F1000 Biol Rep. 2009 Aug 26;1:66. doi: 10.3410/B1-66.

26.

Phototransduction and the evolution of photoreceptors.

Fain GL, Hardie R, Laughlin SB.

Curr Biol. 2010 Feb 9;20(3):R114-24. doi: 10.1016/j.cub.2009.12.006. Review.

27.

Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods.

Chen CK, Woodruff ML, Chen FS, Chen D, Fain GL.

J Neurosci. 2010 Jan 27;30(4):1213-20. doi: 10.1523/JNEUROSCI.4353-09.2010.

28.

Knockout of GARPs and the β-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity.

Zhang Y, Molday LL, Molday RS, Sarfare SS, Woodruff ML, Fain GL, Kraft TW, Pittler SJ.

J Cell Sci. 2009 Apr 15;122(Pt 8):1192-200. doi: 10.1242/jcs.042531. Erratum in: J Cell Sci. 2009 Jun 1;122(Pt 11):1927.

29.

ATP consumption by mammalian rod photoreceptors in darkness and in light.

Okawa H, Sampath AP, Laughlin SB, Fain GL.

Curr Biol. 2008 Dec 23;18(24):1917-21. doi: 10.1016/j.cub.2008.10.029. Epub 2008 Dec 11.

30.

Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin.

Dizhoor AM, Woodruff ML, Olshevskaya EV, Cilluffo MC, Cornwall MC, Sieving PA, Fain GL.

J Neurosci. 2008 Nov 5;28(45):11662-72. doi: 10.1523/JNEUROSCI.4006-08.2008.

31.

Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q).

Davis RJ, Tosi J, Janisch KM, Kasanuki JM, Wang NK, Kong J, Tsui I, Cilluffo M, Woodruff ML, Fain GL, Lin CS, Tsang SH.

Invest Ophthalmol Vis Sci. 2008 Nov;49(11):5067-76. doi: 10.1167/iovs.07-1422. Epub 2008 Jul 24.

32.

Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors.

Woodruff ML, Janisch KM, Peshenko IV, Dizhoor AM, Tsang SH, Fain GL.

J Neurosci. 2008 Feb 27;28(9):2064-74. doi: 10.1523/JNEUROSCI.2973-07.2008. Erratum in: J Neurosci. 2008 Dec 3;28(49):13363.

33.

Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration caused by elevated production of cGMP in the dark.

Woodruff ML, Olshevskaya EV, Savchenko AB, Peshenko IV, Barrett R, Bush RA, Sieving PA, Fain GL, Dizhoor AM.

J Neurosci. 2007 Aug 15;27(33):8805-15.

34.

Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response.

Tsang SH, Woodruff ML, Janisch KM, Cilluffo MC, Farber DB, Fain GL.

J Physiol. 2007 Mar 1;579(Pt 2):303-12. Epub 2006 Nov 30.

35.

Simultaneous measurement of current and calcium in the ultraviolet-sensitive cones of zebrafish.

Leung YT, Fain GL, Matthews HR.

J Physiol. 2007 Feb 15;579(Pt 1):15-27. Epub 2006 Nov 23.

36.

GAP-independent termination of photoreceptor light response by excess gamma subunit of the cGMP-phosphodiesterase.

Tsang SH, Woodruff ML, Chen CK, Yamashita CY, Cilluffo MC, Rao AL, Farber DB, Fain GL.

J Neurosci. 2006 Apr 26;26(17):4472-80.

37.

Effects of low AIPL1 expression on phototransduction in rods.

Makino CL, Wen XH, Michaud N, Peshenko IV, Pawlyk B, Brush RS, Soloviev M, Liu X, Woodruff ML, Calvert PD, Savchenko AB, Anderson RE, Fain GL, Li T, Sandberg MA, Dizhoor AM.

Invest Ophthalmol Vis Sci. 2006 May;47(5):2185-94. Erratum in: Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2279.

PMID:
16639031
38.

Why photoreceptors die (and why they don't).

Fain GL.

Bioessays. 2006 Apr;28(4):344-54. Review.

PMID:
16547945
39.

Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.

Fan J, Woodruff ML, Cilluffo MC, Crouch RK, Fain GL.

J Physiol. 2005 Oct 1;568(Pt 1):83-95. Epub 2005 Jul 1.

40.

Light-induced Ca2+ release in the visible cones of the zebrafish.

Cilluffo MC, Matthews HR, Brockerhoff SE, Fain GL.

Vis Neurosci. 2004 Jul-Aug;21(4):599-609.

PMID:
15579223
41.

AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase.

Liu X, Bulgakov OV, Wen XH, Woodruff ML, Pawlyk B, Yang J, Fain GL, Sandberg MA, Makino CL, Li T.

Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13903-8. Epub 2004 Sep 13. Erratum in: Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):515.

42.

The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice.

Olshevskaya EV, Calvert PD, Woodruff ML, Peshenko IV, Savchenko AB, Makino CL, Ho YS, Fain GL, Dizhoor AM.

J Neurosci. 2004 Jul 7;24(27):6078-85.

43.

Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release.

Woodruff ML, Lem J, Fain GL.

J Physiol. 2004 Jun 15;557(Pt 3):821-8. Epub 2004 Apr 8.

44.

Constitutive opsin signaling: night blindness or retinal degeneration?

Lem J, Fain GL.

Trends Mol Med. 2004 Apr;10(4):150-7.

PMID:
15059605
45.

Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis.

Woodruff ML, Wang Z, Chung HY, Redmond TM, Fain GL, Lem J.

Nat Genet. 2003 Oct;35(2):158-64. Epub 2003 Sep 21.

PMID:
14517541
46.

The effect of light on outer segment calcium in salamander rods.

Matthews HR, Fain GL.

J Physiol. 2003 Nov 1;552(Pt 3):763-76. Epub 2003 Aug 29.

47.

Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof.

Brockerhoff SE, Rieke F, Matthews HR, Taylor MR, Kennedy B, Ankoudinova I, Niemi GA, Tucker CL, Xiao M, Cilluffo MC, Fain GL, Hurley JB.

J Neurosci. 2003 Jan 15;23(2):470-80.

48.

Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice.

Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV, Lem J, Fain GL.

J Physiol. 2002 Aug 1;542(Pt 3):843-54.

49.
50.

Dark adaptation.

Fain GL.

Prog Brain Res. 2001;131:383-94. Review. No abstract available.

PMID:
11420957

Supplemental Content

Support Center