Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 58

1.

Dickeya dadantii pectic enzymes necessary for virulence are also responsible for activation of the Arabidopsis thaliana innate immune system.

Expert D, Patrit O, Shevchik VE, Perino C, Boucher V, Creze C, Wenes E, Fagard M.

Mol Plant Pathol. 2018 Feb;19(2):313-327. doi: 10.1111/mpp.12522. Epub 2017 Jan 25.

2.

Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack.

Nguyen NN, Ranwez V, Vile D, Soulié MC, Dellagi A, Expert D, Gosti F.

Front Plant Sci. 2014 Mar 11;5:70. doi: 10.3389/fpls.2014.00070. eCollection 2014.

3.

Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

Aznar A, Chen NW, Rigault M, Riache N, Joseph D, Desmaële D, Mouille G, Boutet S, Soubigou-Taconnat L, Renou JP, Thomine S, Expert D, Dellagi A.

Plant Physiol. 2014 Apr;164(4):2167-83. doi: 10.1104/pp.113.233585. Epub 2014 Feb 5.

4.

Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

Morcx S, Kunz C, Choquer M, Assie S, Blondet E, Simond-Côte E, Gajek K, Chapeland-Leclerc F, Expert D, Soulie MC.

Fungal Genet Biol. 2013 Mar;52:1-8. doi: 10.1016/j.fgb.2012.11.011. Epub 2012 Dec 22.

PMID:
23268147
5.

Role of iron homeostasis in the virulence of phytopathogenic bacteria: an 'à la carte' menu.

Franza T, Expert D.

Mol Plant Pathol. 2013 May;14(4):429-38. doi: 10.1111/mpp.12007. Epub 2012 Nov 21. Review.

6.

The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity.

Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, López Solanilla E, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Rodríguez Palenzuela P, San Francisco M, Toth I, Tsuyumu S, van der Waals J, van der Wolf J, Van Gijsegem F, Yang CH, Yedidia I.

Annu Rev Phytopathol. 2012;50:425-49. doi: 10.1146/annurev-phyto-081211-173013. Epub 2012 Jun 12. Review.

PMID:
22702350
7.

Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea.

Kieu NP, Aznar A, Segond D, Rigault M, Simond-Côte E, Kunz C, Soulie MC, Expert D, Dellagi A.

Mol Plant Pathol. 2012 Oct;13(8):816-27. doi: 10.1111/j.1364-3703.2012.00790.x. Epub 2012 Feb 29.

8.

Role of the Dickeya dadantii Dps protein.

Boughammoura A, Expert D, Franza T.

Biometals. 2012 Apr;25(2):423-33. doi: 10.1007/s10534-011-9515-5. Epub 2011 Dec 28.

PMID:
22203404
9.

Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937.

Glasner JD, Yang CH, Reverchon S, Hugouvieux-Cotte-Pattat N, Condemine G, Bohin JP, Van Gijsegem F, Yang S, Franza T, Expert D, Plunkett G 3rd, San Francisco MJ, Charkowski AO, Py B, Bell K, Rauscher L, Rodriguez-Palenzuela P, Toussaint A, Holeva MC, He SY, Douet V, Boccara M, Blanco C, Toth I, Anderson BD, Biehl BS, Mau B, Flynn SM, Barras F, Lindeberg M, Birch PR, Tsuyumu S, Shi X, Hibbing M, Yap MN, Carpentier M, Dassa E, Umehara M, Kim JF, Rusch M, Soni P, Mayhew GF, Fouts DE, Gill SR, Blattner FR, Keen NT, Perna NT.

J Bacteriol. 2011 Apr;193(8):2076-7. doi: 10.1128/JB.01513-10. Epub 2011 Jan 7.

10.

Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.

Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC.

Mol Plant Microbe Interact. 2010 Oct;23(10):1324-34. doi: 10.1094/MPMI-02-10-0046.

11.

Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96.

Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H.

Appl Environ Microbiol. 2010 May;76(9):2704-11. doi: 10.1128/AEM.02979-09. Epub 2010 Mar 5.

12.

Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status.

Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D.

Plant Physiol. 2009 Aug;150(4):1687-96. doi: 10.1104/pp.109.138636. Epub 2009 May 15.

13.

NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection.

Segond D, Dellagi A, Lanquar V, Rigault M, Patrit O, Thomine S, Expert D.

Plant J. 2009 Apr;58(2):195-207. doi: 10.1111/j.1365-313X.2008.03775.x. Epub 2008 Dec 11.

14.
15.

Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system.

Douet V, Expert D, Barras F, Py B.

J Bacteriol. 2009 Feb;191(3):795-804. doi: 10.1128/JB.00845-08. Epub 2008 Oct 31.

16.

Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi.

Tomisić V, Blanc S, Elhabiri M, Expert D, Albrecht-Gary AM.

Inorg Chem. 2008 Oct 20;47(20):9419-30. doi: 10.1021/ic801143e. Epub 2008 Sep 20.

PMID:
18803373
17.

PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937.

Hommais F, Oger-Desfeux C, Van Gijsegem F, Castang S, Ligori S, Expert D, Nasser W, Reverchon S.

J Bacteriol. 2008 Nov;190(22):7508-22. doi: 10.1128/JB.00553-08. Epub 2008 Sep 12.

18.

Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937.

Boughammoura A, Matzanke BF, Böttger L, Reverchon S, Lesuisse E, Expert D, Franza T.

J Bacteriol. 2008 Mar;190(5):1518-30. doi: 10.1128/JB.01640-07. Epub 2007 Dec 28.

19.

Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi.

Fagard M, Dellagi A, Roux C, Périno C, Rigault M, Boucher V, Shevchik VE, Expert D.

Mol Plant Microbe Interact. 2007 Jul;20(7):794-805.

20.

Ferritins, bacterial virulence and plant defence.

Boughammoura A, Franza T, Dellagi A, Roux C, Matzanke-Markstein B, Expert D.

Biometals. 2007 Jun;20(3-4):347-53. Epub 2007 Jan 10. Review.

PMID:
17216356
21.

Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection.

Dellagi A, Rigault M, Segond D, Roux C, Kraepiel Y, Cellier F, Briat JF, Gaymard F, Expert D.

Plant J. 2005 Jul;43(2):262-72.

22.

Self-assembly of an amphiphilic iron(III) chelator: mimicking iron acquisition in marine bacteria.

Apostol M, Baret P, Serratrice G, Desbrières J, Putaux JL, Stébé MJ, Expert D, Pierre JL.

Angew Chem Int Ed Engl. 2005 Apr 22;44(17):2580-2. No abstract available.

PMID:
15770628
24.

SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress.

Nachin L, Loiseau L, Expert D, Barras F.

EMBO J. 2003 Feb 3;22(3):427-37.

25.

Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937.

Franza T, Michaud-Soret I, Piquerel P, Expert D.

Mol Plant Microbe Interact. 2002 Nov;15(11):1181-91.

26.
27.
28.

Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase.

Rauscher L, Expert D, Matzanke BF, Trautwein AX.

J Biol Chem. 2002 Jan 25;277(4):2385-95. Epub 2001 Nov 1.

29.

Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937.

Santos R, Franza T, Laporte ML, Sauvage C, Touati D, Expert D.

Mol Plant Microbe Interact. 2001 Jun;14(6):758-67.

30.

SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase.

Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F.

Mol Microbiol. 2001 Feb;39(4):960-72.

31.
32.

Achromobactin, a new citrate siderophore of Erwinia chrysanthemi.

Münzinger M, Budzikiewicz H, Expert D, Enard C, Meyer JM.

Z Naturforsch C. 2000 May-Jun;55(5-6):328-32.

PMID:
10928541
33.

Polyphenols, metal ion complexation and biological consequences.

Scalbert A, Mila I, Expert D, Marmolle F, Albrecht AM, Hurrell R, Huneau JF, Tomé D.

Basic Life Sci. 1999;66:545-54. Review. No abstract available.

PMID:
10800462
34.

Expression of the ferrioxamine receptor gene of Erwinia amylovora CFBP 1430 during pathogenesis.

Dellagi A, Reis D, Vian B, Expert D.

Mol Plant Microbe Interact. 1999 May;12(5):463-6.

35.

The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi.

Hassouni ME, Chambost JP, Expert D, Van Gijsegem F, Barras F.

Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):887-92.

36.

Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein.

Franza T, Sauvage C, Expert D.

Mol Plant Microbe Interact. 1999 Feb;12(2):119-28.

37.

Dual role of desferrioxamine in Erwinia amylovora pathogenicity.

Dellagi A, Brisset MN, Paulin JP, Expert D.

Mol Plant Microbe Interact. 1998 Aug;11(8):734-42.

38.

The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

Reverchon S, Expert D, Robert-Baudouy J, Nasser W.

J Bacteriol. 1997 Jun;179(11):3500-8.

39.

The role of iron in plant host-pathogen interactions.

Expert D, Enard C, Masclaux C.

Trends Microbiol. 1996 Jun;4(6):232-7. Review.

PMID:
8795159
40.

Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP1430: cloning of the gene encoding the ferrioxamine receptor FoxR.

Kachadourian R, Dellagi A, Laurent J, Bricard L, Kunesch G, Expert D.

Biometals. 1996 Apr;9(2):143-50.

PMID:
8744897
43.
44.

Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds.

Persmark M, Expert D, Neilands JB.

J Bacteriol. 1992 Jul;174(14):4783-9. Erratum in: J Bacteriol 1992 Sep;174(18):6004.

45.
46.

Activity and specificity of a mouse monoclonal antibody to ferric aerobactin.

le Roy D, Expert D, Razafindratsita A, Deroussent A, Cosme J, Bohuon C, Andremont A.

Infect Immun. 1992 Mar;60(3):768-72.

48.
50.

Supplemental Content

Loading ...
Support Center