Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor.

Singh A, Manjunath LE, Kundu P, Sahoo S, Das A, Suma HR, Fox PL, Eswarappa SM.

EMBO J. 2019 Aug 15;38(16):e100727. doi: 10.15252/embj.2018100727. Epub 2019 Jul 22.

2.

Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase.

Eswarappa SM, Potdar AA, Sahoo S, Sankar S, Fox PL.

J Biol Chem. 2018 Dec 7;293(49):19148-19156. doi: 10.1074/jbc.RA118.004276. Epub 2018 Oct 11.

3.

Stimulation of angiogenesis using single-pulse low-pressure shock wave treatment.

Sundaram S, Sellamuthu K, Nagavelu K, Suma HR, Das A, Narayan R, Chakravortty D, Gopalan J, Eswarappa SM.

J Mol Med (Berl). 2018 Nov;96(11):1177-1187. doi: 10.1007/s00109-018-1690-1. Epub 2018 Aug 28.

PMID:
30155768
4.

Maneuverability of Magnetic Nanomotors Inside Living Cells.

Pal M, Somalwar N, Singh A, Bhat R, Eswarappa SM, Saini DK, Ghosh A.

Adv Mater. 2018 May;30(22):e1800429. doi: 10.1002/adma.201800429. Epub 2018 Apr 10.

PMID:
29635828
5.

Manganese-Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase.

Singh N, Geethika M, Eswarappa SM, Mugesh G.

Chemistry. 2018 Jun 12;24(33):8393-8403. doi: 10.1002/chem.201800770. Epub 2018 May 17.

PMID:
29603822
6.

Antiangiogenic VEGF-Ax: A New Participant in Tumor Angiogenesis.

Eswarappa SM, Fox PL.

Cancer Res. 2015 Jul 15;75(14):2765-9. doi: 10.1158/0008-5472.CAN-14-3805. Epub 2015 Jun 29. Review.

7.

Translational control mechanisms in angiogenesis and vascular biology.

Yao P, Eswarappa SM, Fox PL.

Curr Atheroscler Rep. 2015 May;17(5):506. doi: 10.1007/s11883-015-0506-9. Review.

PMID:
25786748
8.

Programmed translational readthrough generates antiangiogenic VEGF-Ax.

Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL.

Cell. 2014 Jun 19;157(7):1605-18. doi: 10.1016/j.cell.2014.04.033.

9.

Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1α accumulation.

Fan Y, Potdar AA, Gong Y, Eswarappa SM, Donnola S, Lathia JD, Hambardzumyan D, Rich JN, Fox PL.

Nat Cell Biol. 2014 May;16(5):445-56. doi: 10.1038/ncb2954. Epub 2014 Apr 20.

10.

The HILDA complex coordinates a conditional switch in the 3'-untranslated region of the VEGFA mRNA.

Yao P, Potdar AA, Ray PS, Eswarappa SM, Flagg AC, Willard B, Fox PL.

PLoS Biol. 2013;11(8):e1001635. doi: 10.1371/journal.pbio.1001635. Epub 2013 Aug 20.

11.

Citric acid cycle and the origin of MARS.

Eswarappa SM, Fox PL.

Trends Biochem Sci. 2013 May;38(5):222-8. doi: 10.1016/j.tibs.2013.01.005. Epub 2013 Feb 14.

12.

Non-neutral evolution in non-LEE-encoded type III effectors of attaching and effacing Escherichia coli.

Eswarappa SM, Janice J, Balasundaram SV, Chakravortty D.

Microbes Infect. 2013 Feb;15(2):147-51. doi: 10.1016/j.micinf.2012.10.015. Epub 2012 Nov 7.

PMID:
23142035
13.

Stimulus-dependent phosphorylation of profilin-1 in angiogenesis.

Fan Y, Arif A, Gong Y, Jia J, Eswarappa SM, Willard B, Horowitz A, Graham LM, Penn MS, Fox PL.

Nat Cell Biol. 2012 Oct;14(10):1046-56. doi: 10.1038/ncb2580. Epub 2012 Sep 23.

14.

Myo1c facilitates G-actin transport to the leading edge of migrating endothelial cells.

Fan Y, Eswarappa SM, Hitomi M, Fox PL.

J Cell Biol. 2012 Jul 9;198(1):47-55. doi: 10.1083/jcb.201111088.

15.

Within-host dynamics of multi-species infections: facilitation, competition and virulence.

Eswarappa SM, Estrela S, Brown SP.

PLoS One. 2012;7(6):e38730. doi: 10.1371/journal.pone.0038730. Epub 2012 Jun 21.

16.

Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L.

Jafarifar F, Yao P, Eswarappa SM, Fox PL.

EMBO J. 2011 Apr 6;30(7):1324-34. doi: 10.1038/emboj.2011.38. Epub 2011 Feb 22.

17.

Needleless vaccine delivery using micro-shock waves.

Jagadeesh G, Prakash GD, Rakesh SG, Allam US, Krishna MG, Eswarappa SM, Chakravortty D.

Clin Vaccine Immunol. 2011 Apr;18(4):539-45. doi: 10.1128/CVI.00494-10. Epub 2011 Feb 9.

18.

Altering the balance between pathogen containing vacuoles and lysosomes: a lesson from Salmonella.

Lahiri A, Eswarappa SM, Das P, Chakravortty D.

Virulence. 2010 Jul-Aug;1(4):325-9. doi: 10.4161/viru.1.4.12361.

PMID:
21178464
19.

Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes.

Eswarappa SM, Negi VD, Chakraborty S, Chandrasekhar Sagar BK, Chakravortty D.

Infect Immun. 2010 Jan;78(1):68-79. doi: 10.1128/IAI.00668-09. Epub 2009 Oct 26.

20.

lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella.

Eswarappa SM, Karnam G, Nagarajan AG, Chakraborty S, Chakravortty D.

PLoS One. 2009 Jun 4;4(6):e5789. doi: 10.1371/journal.pone.0005789.

21.

Host-specificity of Salmonella enterica serovar Gallinarum: insights from comparative genomics.

Eswarappa SM, Janice J, Balasundaram SV, Dixit NM, Chakravortty D.

Infect Genet Evol. 2009 Jul;9(4):468-73. doi: 10.1016/j.meegid.2009.01.004. Epub 2009 Jan 19.

PMID:
19454277
22.

SopB of Salmonella enterica serovar Typhimurium is a potential DNA vaccine candidate in conjugation with live attenuated bacteria.

Nagarajan AG, Balasundaram SV, Janice J, Karnam G, Eswarappa SM, Chakravortty D.

Vaccine. 2009 May 11;27(21):2804-11. doi: 10.1016/j.vaccine.2009.02.092. Epub 2009 Mar 11.

PMID:
19428891
23.

Location of pathogenic bacteria during persistent infections: insights from an analysis using game theory.

Eswarappa SM.

PLoS One. 2009;4(4):e5383. doi: 10.1371/journal.pone.0005383. Epub 2009 Apr 29.

24.

Differentially evolved genes of Salmonella pathogenicity islands: insights into the mechanism of host specificity in Salmonella.

Eswarappa SM, Janice J, Nagarajan AG, Balasundaram SV, Karnam G, Dixit NM, Chakravortty D.

PLoS One. 2008;3(12):e3829. doi: 10.1371/journal.pone.0003829. Epub 2008 Dec 3.

25.

Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages.

Eswarappa SM, Pareek V, Chakravortty D.

Innate Immun. 2008 Oct;14(5):309-18. doi: 10.1177/1753425908096856.

PMID:
18809655
26.

Folimycin (concanamycin A) inhibits LPS-induced nitric oxide production and reduces surface localization of TLR4 in murine macrophages.

Eswarappa SM, Basu N, Joy O, Chakravortty D.

Innate Immun. 2008 Feb;14(1):13-24. doi: 10.1177/1753425907087349.

PMID:
18387916
27.

The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence.

Eswarappa SM, Panguluri KK, Hensel M, Chakravortty D.

Microbiology. 2008 Feb;154(Pt 2):666-78. doi: 10.1099/mic.0.2007/011114-0.

PMID:
18227269

Supplemental Content

Loading ...
Support Center