Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Current CRISPR gene drive systems are likely to be highly invasive in wild populations.

Noble C, Adlam B, Church GM, Esvelt KM, Nowak MA.

Elife. 2018 Jun 19;7. pii: e33423. doi: 10.7554/eLife.33423.

2.

Driving towards ecotechnologies.

Najjar DA, Normandin AM, Strait EA, Esvelt KM.

Pathog Glob Health. 2017 Dec;111(8):448-458. doi: 10.1080/20477724.2018.1452844. Epub 2018 Apr 9.

PMID:
29629849
3.

Conservation demands safe gene drive.

Esvelt KM, Gemmell NJ.

PLoS Biol. 2017 Nov 16;15(11):e2003850. doi: 10.1371/journal.pbio.2003850. eCollection 2017 Nov.

4.

Evolutionary dynamics of CRISPR gene drives.

Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA.

Sci Adv. 2017 Apr 5;3(4):e1601964. doi: 10.1126/sciadv.1601964. eCollection 2017 Apr.

5.

Unnatural Responsibilities.

Esvelt KM.

Sci Am. 2017 Mar 14;316(4):50-51. doi: 10.1038/scientificamerican0417-50. No abstract available.

PMID:
28296855
6.

Precaution: Open gene drive research.

Esvelt KM.

Science. 2017 Feb 10;355(6325):589-590. doi: 10.1126/science.aal5325. No abstract available.

PMID:
28183944
7.

Characterization of Cas9-Guide RNA Orthologs.

Braff JL, Yaung SJ, Esvelt KM, Church GM.

Cold Spring Harb Protoc. 2016 May 2;2016(5). doi: 10.1101/pdb.top086793.

PMID:
27140923
8.

Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments.

Braff JL, Yaung SJ, Esvelt KM, Church GM.

Cold Spring Harb Protoc. 2016 May 2;2016(5). doi: 10.1101/pdb.prot090183.

PMID:
27140916
9.

Safeguarding CRISPR-Cas9 gene drives in yeast.

DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM.

Nat Biotechnol. 2015 Dec;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub 2015 Nov 16.

10.

BIOSAFETY. Safeguarding gene drive experiments in the laboratory.

Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, Cook KR, Duchek P, Edwards OR, Esvelt KM, Gantz VM, Golic KG, Gratz SJ, Harrison MM, Hayes KR, James AA, Kaufman TC, Knoblich J, Malik HS, Matthews KA, O'Connor-Giles KM, Parks AL, Perrimon N, Port F, Russell S, Ueda R, Wildonger J.

Science. 2015 Aug 28;349(6251):927-9. doi: 10.1126/science.aac7932. Epub 2015 Jul 30. No abstract available.

11.

Complete Genome Sequences of T4-Like Bacteriophages RB3, RB5, RB6, RB7, RB9, RB10, RB27, RB33, RB55, RB59, and RB68.

Yaung SJ, Esvelt KM, Church GM.

Genome Announc. 2015 Jan 2;3(1). pii: e01122-14. doi: 10.1128/genomeA.01122-14.

12.

Gene drives raise dual-use concerns--response.

Oye KA, Esvelt KM.

Science. 2014 Aug 29;345(6200):1010-1. doi: 10.1126/science.345.6200.1010-c. No abstract available.

PMID:
25170143
13.

Concerning RNA-guided gene drives for the alteration of wild populations.

Esvelt KM, Smidler AL, Catteruccia F, Church GM.

Elife. 2014 Jul 17;3. pii: e03401. doi: 10.7554/eLife.03401. Review.

14.

CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.

Yaung SJ, Esvelt KM, Church GM.

PLoS One. 2014 Jun 2;9(6):e98811. doi: 10.1371/journal.pone.0098811. eCollection 2014.

15.

Cas9 as a versatile tool for engineering biology.

Mali P, Esvelt KM, Church GM.

Nat Methods. 2013 Oct;10(10):957-63. doi: 10.1038/nmeth.2649. Review.

16.

Orthogonal Cas9 proteins for RNA-guided gene regulation and editing.

Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM.

Nat Methods. 2013 Nov;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub 2013 Sep 29.

17.

CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM.

Nat Biotechnol. 2013 Sep;31(9):833-8. doi: 10.1038/nbt.2675. Epub 2013 Aug 1.

18.

Heritable genome editing in C. elegans via a CRISPR-Cas9 system.

Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA.

Nat Methods. 2013 Aug;10(8):741-3. doi: 10.1038/nmeth.2532. Epub 2013 Jun 30.

19.

Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution.

Dickinson BC, Leconte AM, Allen B, Esvelt KM, Liu DR.

Proc Natl Acad Sci U S A. 2013 May 28;110(22):9007-12. doi: 10.1073/pnas.1220670110. Epub 2013 May 14.

20.

Genome-scale engineering for systems and synthetic biology.

Esvelt KM, Wang HH.

Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66. Review.

21.

RNA-guided human genome engineering via Cas9.

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM.

Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.

22.

Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA.

PLoS One. 2011;6(5):e19991. doi: 10.1371/journal.pone.0019991. Epub 2011 May 26.

23.

A system for the continuous directed evolution of biomolecules.

Esvelt KM, Carlson JC, Liu DR.

Nature. 2011 Apr 28;472(7344):499-503. doi: 10.1038/nature09929. Epub 2011 Apr 10.

Supplemental Content

Loading ...
Support Center