Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

GeM-Pro: a tool for genome functional mining and microbial profiling.

Torres Manno MA, Pizarro MD, Prunello M, Magni C, Daurelio LD, Espariz M.

Appl Microbiol Biotechnol. 2019 Apr;103(7):3123-3134. doi: 10.1007/s00253-019-09648-8. Epub 2019 Feb 7.

PMID:
30729287
2.

Genetic Engineering of Lactococcus lactis Co-producing Antigen and the Mucosal Adjuvant 3' 5'- cyclic di Adenosine Monophosphate (c-di-AMP) as a Design Strategy to Develop a Mucosal Vaccine Prototype.

Quintana I, Espariz M, Villar SR, González FB, Pacini MF, Cabrera G, Bontempi I, Prochetto E, Stülke J, Perez AR, Marcipar I, Blancato V, Magni C.

Front Microbiol. 2018 Sep 4;9:2100. doi: 10.3389/fmicb.2018.02100. eCollection 2018.

3.

Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains.

Torres Manno M, Zuljan F, Alarcón S, Esteban L, Blancato V, Espariz M, Magni C.

J Biotechnol. 2018 Sep 20;282:25-31. doi: 10.1016/j.jbiotec.2018.06.345. Epub 2018 Jun 23.

PMID:
29944909
4.

Safety assessment and functional properties of four enterococci strains isolated from regional Argentinean cheese.

Martino GP, Espariz M, Gallina Nizo G, Esteban L, Blancato VS, Magni C.

Int J Food Microbiol. 2018 Jul 20;277:1-9. doi: 10.1016/j.ijfoodmicro.2018.04.012. Epub 2018 Apr 11.

PMID:
29669304
5.

The Environmental Acinetobacter baumannii Isolate DSM30011 Reveals Clues into the Preantibiotic Era Genome Diversity, Virulence Potential, and Niche Range of a Predominant Nosocomial Pathogen.

Repizo GD, Viale AM, Borges V, Cameranesi MM, Taib N, Espariz M, Brochier-Armanet C, Gomes JP, Salcedo SP.

Genome Biol Evol. 2017 Sep 1;9(9):2292-2307. doi: 10.1093/gbe/evx162.

6.

Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities.

Joyet P, Mokhtari A, Riboulet-Bisson E, Blancato VS, Espariz M, Magni C, Hartke A, Deutscher J, Sauvageot N.

Appl Environ Microbiol. 2017 Jun 16;83(13). pii: e00038-17. doi: 10.1128/AEM.00038-17. Print 2017 Jul 1.

7.

Taxonomic Identity Resolution of Highly Phylogenetically Related Strains and Selection of Phylogenetic Markers by Using Genome-Scale Methods: The Bacillus pumilus Group Case.

Espariz M, Zuljan FA, Esteban L, Magni C.

PLoS One. 2016 Sep 22;11(9):e0163098. doi: 10.1371/journal.pone.0163098. eCollection 2016.

8.

Genome mining of lipolytic exoenzymes from Bacillus safensis S9 and Pseudomonas alcaliphila ED1 isolated from a dairy wastewater lagoon.

Ficarra FA, Santecchia I, Lagorio SH, Alarcón S, Magni C, Espariz M.

Arch Microbiol. 2016 Nov;198(9):893-904. doi: 10.1007/s00203-016-1250-4. Epub 2016 Jun 7.

PMID:
27270463
9.

Draft Genome Sequences of Four Enterococcus faecium Strains Isolated from Argentine Cheese.

Martino GP, Quintana IM, Espariz M, Blancato VS, Gallina Nizo G, Esteban L, Magni C.

Genome Announc. 2016 Feb 4;4(1). pii: e01576-15. doi: 10.1128/genomeA.01576-15.

10.

Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

Zuljan F, Espariz M, Blancato VS, Esteban L, Alarcón S, Magni C.

Genome Announc. 2016 Feb 4;4(1). pii: e01575-15. doi: 10.1128/genomeA.01575-15.

11.

Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

Martino GP, Quintana IM, Espariz M, Blancato VS, Magni C.

Int J Food Microbiol. 2016 Feb 2;218:27-37. doi: 10.1016/j.ijfoodmicro.2015.11.004. Epub 2015 Nov 14.

PMID:
26594791
12.

Genomic comparative analysis of the environmental Enterococcus mundtii against enterococcal representative species.

Repizo GD, Espariz M, Blancato VS, Suárez CA, Esteban L, Magni C.

BMC Genomics. 2014 Jun 18;15:489. doi: 10.1186/1471-2164-15-489.

13.

Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.

Suárez C, Espariz M, Blancato VS, Magni C.

PLoS One. 2013 Oct 14;8(10):e76170. doi: 10.1371/journal.pone.0076170. eCollection 2013.

14.

Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis.

Mortera P, Espariz M, Suárez C, Repizo G, Deutscher J, Alarcón S, Blancato V, Magni C.

Appl Environ Microbiol. 2012 Mar;78(6):1936-45. doi: 10.1128/AEM.07280-11. Epub 2012 Jan 13.

15.

Draft genome sequence of Enterococcus mundtii CRL1656.

Magni C, Espeche C, Repizo GD, Saavedra L, Suárez CA, Blancato VS, Espariz M, Esteban L, Raya RR, Font de Valdez G, Vignolo G, Mozzi F, Taranto MP, Hebert EM, Nader-Macías ME, Sesma F.

J Bacteriol. 2012 Jan;194(2):550. doi: 10.1128/JB.06415-11.

16.

Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis.

Espariz M, Repizo G, Blancato V, Mortera P, Alarcón S, Magni C.

FEBS J. 2011 Jun;278(12):2140-51. doi: 10.1111/j.1742-4658.2011.08131.x. Epub 2011 May 17.

17.

Downregulation of RpoN-controlled genes protects Salmonella cells from killing by the cationic antimicrobial peptide polymyxin B.

Barchiesi J, Espariz M, Checa SK, Soncini FC.

FEMS Microbiol Lett. 2009 Feb;291(1):73-9. doi: 10.1111/j.1574-6968.2008.01437.x. Epub 2008 Dec 3.

18.

GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon.

Pontel LB, Audero ME, Espariz M, Checa SK, Soncini FC.

Mol Microbiol. 2007 Nov;66(3):814-25. Epub 2007 Oct 4.

19.

Dissecting the Salmonella response to copper.

Espariz M, Checa SK, Audero ME, Pontel LB, Soncini FC.

Microbiology. 2007 Sep;153(Pt 9):2989-97.

PMID:
17768242
20.

Bacterial sensing of and resistance to gold salts.

Checa SK, Espariz M, Audero ME, Botta PE, Spinelli SV, Soncini FC.

Mol Microbiol. 2007 Mar;63(5):1307-18. Epub 2007 Jan 22.

21.

Supplemental Content

Loading ...
Support Center