Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Espín G[au]:

Search results

Items: 1 to 50 of 70

1.

Outer membrane protein I is associated with poly-β-hydroxybutyrate granules and is necessary for optimal polymer accumulation in Azotobacter vinelandii on solid medium.

Moreno S, Castellanos M, Bedoya-Pérez LP, Canales-Herrerías P, Espín G, Muriel-Millán LF.

Microbiology. 2019 Jul 22. doi: 10.1099/mic.0.000837. [Epub ahead of print]

PMID:
31329095
2.

Expression of the sRNAs CrcZ and CrcY modulate the strength of carbon catabolite repression under diazotrophic or non-diazotrophic growing conditions in Azotobacter vinelandii.

Martínez-Valenzuela M, Guzmán J, Moreno S, Ahumada-Manuel CL, Espín G, Núñez C.

PLoS One. 2018 Dec 13;13(12):e0208975. doi: 10.1371/journal.pone.0208975. eCollection 2018.

3.

RpoS controls the expression and the transport of the AlgE1-7 epimerases in Azotobacter vinelandii.

Moreno S, Ertesvåg H, Valla S, Núñez C, Espin G, Cocotl-Yañez M.

FEMS Microbiol Lett. 2018 Oct 1;365(19). doi: 10.1093/femsle/fny210.

4.

The pyrophosphohydrolase RppH is involved in the control of RsmA/CsrA expression in Azotobacter vinelandii and Escherichia coli.

Bedoya-Pérez LP, Muriel-Millán LF, Moreno S, Quiroz-Rocha E, Rivera-Gómez N, Espín G.

Microbiol Res. 2018 Sep;214:91-100. doi: 10.1016/j.micres.2018.05.013. Epub 2018 May 18.

5.

Proteomic analysis revealed proteins induced upon Azotobacter vinelandii encystment.

Chowdhury-Paul S, Pando-Robles V, Jiménez-Jacinto V, Segura D, Espín G, Núñez C.

J Proteomics. 2018 Jun 15;181:47-59. doi: 10.1016/j.jprot.2018.03.031. Epub 2018 Mar 29. No abstract available.

PMID:
29605291
6.

Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass.

Adaya L, Millán M, Peña C, Jendrossek D, Espín G, Tinoco-Valencia R, Guzmán J, Pfeiffer D, Segura D.

Appl Microbiol Biotechnol. 2018 Mar;102(6):2693-2707. doi: 10.1007/s00253-018-8806-y. Epub 2018 Feb 12.

PMID:
29435618
7.

Two-component system CbrA/CbrB controls alginate production in Azotobacter vinelandii.

Quiroz-Rocha E, Bonilla-Badía F, García-Aguilar V, López-Pliego L, Serrano-Román J, Cocotl-Yañez M, Guzmán J, Ahumada-Manuel CL, Muriel-Millán LF, Castañeda M, Espín G, Nuñez C.

Microbiology. 2017 Jul;163(7):1105-1115. doi: 10.1099/mic.0.000457. Epub 2017 Jul 21.

PMID:
28699871
8.

Glucose uptake in Azotobacter vinelandii occurs through a GluP transporter that is under the control of the CbrA/CbrB and Hfq-Crc systems.

Quiroz-Rocha E, Moreno R, Hernández-Ortíz A, Fragoso-Jiménez JC, Muriel-Millán LF, Guzmán J, Espín G, Rojo F, Núñez C.

Sci Rep. 2017 Apr 12;7(1):858. doi: 10.1038/s41598-017-00980-5.

9.

LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii.

Rodriguez-Salazar J, Moreno S, Espín G.

Cell Stress Chaperones. 2017 May;22(3):397-408. doi: 10.1007/s12192-017-0781-1. Epub 2017 Mar 3.

10.

Unphosphorylated EIIANtr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii.

Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G.

Mol Microbiol. 2017 Apr;104(2):197-211. doi: 10.1111/mmi.13621. Epub 2017 Feb 6.

11.

GacA regulates the PTSNtr-dependent control of cyst formation in Azotobacter vinelandii.

Trejo A, Moreno S, Cocotl-Yañez M, Espín G.

FEMS Microbiol Lett. 2017 Jan;364(2). pii: fnw278. doi: 10.1093/femsle/fnw278. Epub 2016 Dec 8.

PMID:
27940465
12.

The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii.

Ahumada-Manuel CL, Guzmán J, Peña C, Quiroz-Rocha E, Espín G, Núñez C.

Appl Microbiol Biotechnol. 2017 Feb;101(4):1521-1534. doi: 10.1007/s00253-016-7931-8. Epub 2016 Oct 28.

PMID:
27796435
13.

The GacS/A-RsmA Signal Transduction Pathway Controls the Synthesis of Alkylresorcinol Lipids that Replace Membrane Phospholipids during Encystment of Azotobacter vinelandii SW136.

Romero Y, Guzmán J, Moreno S, Cocotl-Yañez M, Vences-Guzmán MÁ, Castañeda M, Espín G, Segura D.

PLoS One. 2016 Apr 7;11(4):e0153266. doi: 10.1371/journal.pone.0153266. eCollection 2016.

14.

The unphosphorylated EIIA(Ntr) protein represses the synthesis of alkylresorcinols in Azotobacter vinelandii.

Muriel-Millán LF, Moreno S, Romero Y, Bedoya-Pérez LP, Castañeda M, Segura D, Espín G.

PLoS One. 2015 Feb 2;10(2):e0117184. doi: 10.1371/journal.pone.0117184. eCollection 2015.

15.

High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI.

PLoS One. 2014 Jun 2;9(6):e98873. doi: 10.1371/journal.pone.0098873. eCollection 2014.

16.

Strong seed-bank effects in bacterial evolution.

González-Casanova A, Aguirre-von-Wobeser E, Espín G, Servín-González L, Kurt N, Spanò D, Blath J, Soberón-Chávez G.

J Theor Biol. 2014 Sep 7;356:62-70. doi: 10.1016/j.jtbi.2014.04.009. Epub 2014 Apr 24.

PMID:
24768952
17.

A small heat-shock protein (Hsp20) regulated by RpoS is essential for cyst desiccation resistance in Azotobacter vinelandii.

Cocotl-Yañez M, Moreno S, Encarnación S, López-Pliego L, Castañeda M, Espín G.

Microbiology. 2014 Mar;160(Pt 3):479-87. doi: 10.1099/mic.0.073353-0. Epub 2014 Jan 2.

PMID:
24385478
18.

Posttranscriptional regulation of PhbR, the transcriptional activator of polyhydroxybutyrate synthesis, by iron and the sRNA ArrF in Azotobacter vinelandii.

Muriel-Millán LF, Castellanos M, Hernandez-Eligio JA, Moreno S, Espín G.

Appl Microbiol Biotechnol. 2014 Mar;98(5):2173-82. doi: 10.1007/s00253-013-5407-7. Epub 2013 Dec 4.

PMID:
24305738
19.

Expression of alginases and alginate polymerase genes in response to oxygen, and their relationship with the alginate molecular weight in Azotobacter vinelandii.

Flores C, Moreno S, Espín G, Peña C, Galindo E.

Enzyme Microb Technol. 2013 Jul 10;53(2):85-91. doi: 10.1016/j.enzmictec.2013.04.010. Epub 2013 May 14.

PMID:
23769307
20.

Sigma factor RpoS controls alkylresorcinol synthesis through ArpR, a LysR-type regulatory protein, during encystment of Azotobacter vinelandii.

Romero Y, Moreno S, Guzmán J, Espín G, Segura D.

J Bacteriol. 2013 Apr;195(8):1834-44. doi: 10.1128/JB.01946-12. Epub 2013 Feb 1.

21.

Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone.

Núñez C, Peña C, Kloeckner W, Hernández-Eligio A, Bogachev AV, Moreno S, Guzmán J, Büchs J, Espín G.

Appl Microbiol Biotechnol. 2013 Mar;97(6):2503-12. doi: 10.1007/s00253-012-4329-0. Epub 2012 Aug 10.

PMID:
22878844
22.

Azotobacter vinelandii lacking the Na(+)-NQR activity: a potential source for producing alginates with improved properties and at high yield.

Gaytán I, Peña C, Núñez C, Córdova MS, Espín G, Galindo E.

World J Microbiol Biotechnol. 2012 Aug;28(8):2731-40. doi: 10.1007/s11274-012-1084-4. Epub 2012 Jun 7.

PMID:
22806199
23.

RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii.

Hernandez-Eligio A, Moreno S, Castellanos M, Castañeda M, Nuñez C, Muriel-Millan LF, Espín G.

Microbiology. 2012 Aug;158(Pt 8):1953-63. doi: 10.1099/mic.0.059329-0. Epub 2012 May 18.

PMID:
22609755
24.

Post-transcriptional regulation of the alginate biosynthetic gene algD by the Gac/Rsm system in Azotobacter vinelandii.

Manzo J, Cocotl-Yañez M, Tzontecomani T, Martínez VM, Bustillos R, Velásquez C, Goiz Y, Solís Y, López L, Fuentes LE, Nuñez C, Segura D, Espín G, Castañeda M.

J Mol Microbiol Biotechnol. 2011;21(3-4):147-59. doi: 10.1159/000334244. Epub 2012 Jan 31.

PMID:
22286042
25.

Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS.

Hernandez-Eligio A, Castellanos M, Moreno S, Espín G.

Microbiology. 2011 Nov;157(Pt 11):3014-23. doi: 10.1099/mic.0.051649-0. Epub 2011 Jul 21.

PMID:
21778206
26.

Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii.

Cocotl-Yañez M, Sampieri A, Moreno S, Núñez C, Castañeda M, Segura D, Espín G.

Microbiology. 2011 Jun;157(Pt 6):1685-93. doi: 10.1099/mic.0.046268-0. Epub 2011 Mar 31.

PMID:
21454367
27.

Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-beta-hydroxybutyrate (PHB) synthesis.

Mejía MA, Segura D, Espín G, Galindo E, Peña C.

J Appl Microbiol. 2010 Jan;108(1):55-61. doi: 10.1111/j.1365-2672.2009.04403.x.

28.

Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes.

Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O'Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang B, Wheeler C, Zhu H, Dean DR, Dixon R, Wood D.

J Bacteriol. 2009 Jul;191(14):4534-45. doi: 10.1128/JB.00504-09. Epub 2009 May 8.

29.

Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance.

Segura D, Vite O, Romero Y, Moreno S, Castañeda M, Espín G.

J Bacteriol. 2009 May;191(9):3142-8. doi: 10.1128/JB.01575-08. Epub 2009 Mar 6.

30.

The Na+-translocating NADH : ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis.

Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G.

Microbiology. 2009 Jan;155(Pt 1):249-56. doi: 10.1099/mic.0.022533-0.

PMID:
19118365
31.

flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control.

León R, Espín G.

Microbiology. 2008 Jun;154(Pt 6):1719-28. doi: 10.1099/mic.0.2008/017665-0.

32.

The Azotobacter vinelandii AlgE mannuronan C-5-epimerase family is essential for the in vivo control of alginate monomer composition and for functional cyst formation.

Steigedal M, Sletta H, Moreno S, Maerk M, Christensen BE, Bjerkan T, Ellingsen TE, Espìn G, Ertesvåg H, Valla S.

Environ Microbiol. 2008 Jul;10(7):1760-70. doi: 10.1111/j.1462-2920.2008.01597.x. Epub 2008 Mar 28.

PMID:
18373676
33.

Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii.

Fadeeva MS, Núñez C, Bertsova YV, Espín G, Bogachev AV.

FEMS Microbiol Lett. 2008 Feb;279(1):116-23.

34.

Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii.

Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espín G.

J Mol Microbiol Biotechnol. 2008;15(4):244-54. Epub 2007 Sep 20.

PMID:
17878711
35.
36.

Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-type mannuronan C-5-epimerases.

Gimmestad M, Steigedal M, Ertesvåg H, Moreno S, Christensen BE, Espín G, Valla S.

J Bacteriol. 2006 Aug;188(15):5551-60.

37.

Characterization of the Azotobacter vinelandii algC gene involved in alginate and lipopolysaccharide production.

Gaona G, Núñez C, Goldberg JB, Linford AS, Nájera R, Castañeda M, Guzmán J, Espín G, Soberón-Chávez G.

FEMS Microbiol Lett. 2004 Sep 1;238(1):199-206.

38.
39.

The roles of oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii.

Trujillo-Roldán MA, Moreno S, Espín G, Galindo E.

Appl Microbiol Biotechnol. 2004 Feb;63(6):742-7. Epub 2003 Aug 20.

PMID:
12928755
40.

Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate.

Segura D, Guzmán J, Espín G.

Appl Microbiol Biotechnol. 2003 Dec;63(2):159-63. Epub 2003 Jul 26.

PMID:
12898061
41.

Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-beta-hydroxybutyrate synthesis.

Segura D, Cruz T, Espín G.

Arch Microbiol. 2003 Jun;179(6):437-43. Epub 2003 May 6.

PMID:
12732928
42.

Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase.

Trujillo-Roldán MA, Moreno S, Segura D, Galindo E, Espín G.

Appl Microbiol Biotechnol. 2003 Feb;60(6):733-7. Epub 2002 Dec 18.

PMID:
12664154
43.

Alginate production by Azotobacter vinelandii mutants altered in poly-beta-hydroxybutyrate and alginate biosynthesis.

Peña C, Miranda L, Segura D, Núñez C, Espín G, Galindo E.

J Ind Microbiol Biotechnol. 2002 Nov;29(5):209-13.

PMID:
12407452
45.

The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii.

Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G.

J Bacteriol. 2001 Dec;183(23):6787-93.

46.

Azotobacter vinelandii aldehyde dehydrogenase regulated by sigma(54): role in alcohol catabolism and encystment.

Gama-Castro S, Núñez C, Segura D, Moreno S, Guzmán J, Espín G.

J Bacteriol. 2001 Nov;183(21):6169-74.

47.

Beta-ketothiolase genes in Azotobacter vinelandii.

Segura D, Vargas E, Espín G.

Gene. 2000 Dec 30;260(1-2):113-20.

PMID:
11137297
48.

Role of Azotobacter vinelandii mucA and mucC gene products in alginate production.

Núñez C, León R, Guzmán J, Espín G, Soberón-Chávez G.

J Bacteriol. 2000 Dec;182(23):6550-6.

49.

Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii.

Núñez C, Moreno S, Cárdenas L, Soberón-Chávez G, Espín G.

J Bacteriol. 2000 Sep;182(17):4829-35.

50.

The GacS sensor kinase regulates alginate and poly-beta-hydroxybutyrate production in Azotobacter vinelandii.

Castañeda M, Guzmán J, Moreno S, Espín G.

J Bacteriol. 2000 May;182(9):2624-8.

Supplemental Content

Support Center