Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 49

1.
2.

Toxicity of five Cry proteins against the insect pest Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae).

Rodríguez-González Á, Porteous-Álvarez AJ, Val MD, Casquero PA, Escriche B.

J Invertebr Pathol. 2020 Jan;169:107295. doi: 10.1016/j.jip.2019.107295. Epub 2019 Nov 26.

PMID:
31783031
3.

Editorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture.

Ferré J, Escriche B.

Toxins (Basel). 2017 Dec 9;9(12). pii: E396. doi: 10.3390/toxins9120396. No abstract available.

4.

Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins.

Hernández-Martínez P, Gomis-Cebolla J, Ferré J, Escriche B.

Sci Rep. 2017 Nov 24;7(1):16245. doi: 10.1038/s41598-017-16406-1.

5.

Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis.

Bel Y, Banyuls N, Chakroun M, Escriche B, Ferré J.

Toxins (Basel). 2017 Apr 7;9(4). pii: E131. doi: 10.3390/toxins9040131.

6.

Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens.

Bel Y, Sheets JJ, Tan SY, Narva KE, Escriche B.

Appl Environ Microbiol. 2017 May 17;83(11). pii: e00326-17. doi: 10.1128/AEM.00326-17. Print 2017 Jun 1.

7.

Unshared binding sites for Bacillus thuringiensis Cry3Aa and Cry3Ca proteins in the weevil Cylas puncticollis (Brentidae).

Hernández-Martínez P, Vera-Velasco NM, Escriche B.

Toxicon. 2016 Nov;122:50-53. doi: 10.1016/j.toxicon.2016.09.014. Epub 2016 Sep 20.

8.

Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein.

Gomis-Cebolla J, Ruiz de Escudero I, Vera-Velasco NM, Hernández-Martínez P, Hernández-Rodríguez CS, Ceballos T, Palma L, Escriche B, Caballero P, Ferré J.

J Invertebr Pathol. 2017 Jan;142:60-67. doi: 10.1016/j.jip.2016.10.001. Epub 2016 Oct 15.

PMID:
27756652
9.

Correction for Chakroun et al., Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.

Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J.

Microbiol Mol Biol Rev. 2016 Aug 10;80(3):iii. doi: 10.1128/MMBR.00039-16. Print 2016 Sep. No abstract available.

10.

Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.

Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J.

Microbiol Mol Biol Rev. 2016 Mar 2;80(2):329-50. doi: 10.1128/MMBR.00060-15. Print 2016 Jun. Review. Erratum in: Microbiol Mol Biol Rev. 2016 Aug 10;80(3):iii.

11.

Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus.

Crava CM, Jakubowska AK, Escriche B, Herrero S, Bel Y.

PLoS One. 2015 May 18;10(5):e0125991. doi: 10.1371/journal.pone.0125991. eCollection 2015.

12.

Binding analysis of Bacillus thuringiensis Cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae).

Davolos CC, Hernández-Martinez P, Crialesi-Legori PC, Desidério JA, Ferré J, Escriche B, Lemos MV.

J Invertebr Pathol. 2015 May;127:32-4. doi: 10.1016/j.jip.2015.01.013. Epub 2015 Feb 28.

PMID:
25736726
13.

Shared binding sites for the Bacillus thuringiensis proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African sweet potato pest Cylas puncticollis (Brentidae).

Hernández-Martínez P, Vera-Velasco NM, Martínez-Solís M, Ghislain M, Ferré J, Escriche B.

Appl Environ Microbiol. 2014 Dec;80(24):7545-50. doi: 10.1128/AEM.02514-14. Epub 2014 Sep 26.

14.

Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner).

Hernández-Martínez P, Hernández-Rodríguez CS, Van Rie J, Escriche B, Ferré J.

J Invertebr Pathol. 2014 Jul;120:1-3. doi: 10.1016/j.jip.2014.04.008. Epub 2014 May 2.

PMID:
24799046
15.

A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests.

Ruiz de Escudero I, Banyuls N, Bel Y, Maeztu M, Escriche B, Muñoz D, Caballero P, Ferré J.

J Invertebr Pathol. 2014 Mar;117:51-5. doi: 10.1016/j.jip.2014.01.006. Epub 2014 Feb 6.

PMID:
24508583
16.

Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin.

Bel Y, Jakubowska AK, Costa J, Herrero S, Escriche B.

PLoS One. 2013 Dec 2;8(12):e81927. doi: 10.1371/journal.pone.0081927. eCollection 2013.

17.

Midgut aminopeptidase N isoforms from Ostrinia nubilalis: activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis.

Crava CM, Bel Y, Jakubowska AK, Ferré J, Escriche B.

Insect Biochem Mol Biol. 2013 Oct;43(10):924-35. doi: 10.1016/j.ibmb.2013.07.009. Epub 2013 Aug 8.

PMID:
23933214
18.

Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda.

Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J.

PLoS One. 2013 Jul 5;8(7):e68164. doi: 10.1371/journal.pone.0068164. Print 2013.

19.

Quantitative genetic analysis of Cry1Ab tolerance in Ostrinia nubilalis Spanish populations.

Crava CM, Farinós GP, Bel Y, Castañera P, Escriche B.

J Invertebr Pathol. 2013 Jul;113(3):220-7. doi: 10.1016/j.jip.2013.04.004. Epub 2013 Apr 20.

20.

Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests.

Hernández-Martínez P, Hernández-Rodríguez CS, Rie JV, Escriche B, Ferré J.

J Invertebr Pathol. 2013 May;113(1):78-81. doi: 10.1016/j.jip.2013.02.001. Epub 2013 Feb 13.

PMID:
23415860
21.

Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis.

Palma L, Hernández-Rodríguez CS, Maeztu M, Hernández-Martínez P, Ruiz de Escudero I, Escriche B, Muñoz D, Van Rie J, Ferré J, Caballero P.

Appl Environ Microbiol. 2012 Oct;78(19):7163-5. doi: 10.1128/AEM.01360-12. Epub 2012 Aug 3.

22.

Lack of Cry1Fa binding to the midgut brush border membrane in a resistant colony of Plutella xylostella moths with a mutation in the ABCC2 locus.

Hernández-Martínez P, Hernández-Rodríguez CS, Krishnan V, Crickmore N, Escriche B, Ferré J.

Appl Environ Microbiol. 2012 Sep;78(18):6759-61. doi: 10.1128/AEM.01689-12. Epub 2012 Jul 6.

23.

Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein.

Chakroun M, Bel Y, Caccia S, Abdelkefi-Mesrati L, Escriche B, Ferré J.

J Invertebr Pathol. 2012 Jul;110(3):334-9. doi: 10.1016/j.jip.2012.03.021. Epub 2012 Mar 23.

PMID:
22465567
24.

Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species.

Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J.

Appl Environ Microbiol. 2012 Jun;78(11):4048-50. doi: 10.1128/AEM.07591-11. Epub 2012 Mar 23.

26.

Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua.

Hernández-Martínez P, Navarro-Cerrillo G, Caccia S, de Maagd RA, Moar WJ, Ferré J, Escriche B, Herrero S.

PLoS One. 2010 Sep 17;5(9). pii: e12795. doi: 10.1371/journal.pone.0012795.

27.

Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis.

Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferré J, Herrero S.

Environ Microbiol. 2010 Oct;12(10):2730-7. doi: 10.1111/j.1462-2920.2010.02241.x.

PMID:
20482744
28.

Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): sequences, mapping and expression.

Crava CM, Bel Y, Lee SF, Manachini B, Heckel DG, Escriche B.

Insect Biochem Mol Biol. 2010 Jul;40(7):506-15. doi: 10.1016/j.ibmb.2010.04.010. Epub 2010 Apr 24.

PMID:
20420910
29.

Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein.

Hernández-Martínez P, Ferré J, Escriche B.

Pest Manag Sci. 2009 Jun;65(6):645-50. doi: 10.1002/ps.1725.

PMID:
19253909
30.

Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance.

Bel Y, Siqueira HA, Siegfried BD, Ferré J, Escriche B.

Insect Biochem Mol Biol. 2009 Mar;39(3):218-23. doi: 10.1016/j.ibmb.2008.11.005. Epub 2008 Dec 16.

PMID:
19114103
31.

Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis.

Hernández-Martínez P, Ferré J, Escriche B.

J Invertebr Pathol. 2008 Mar;97(3):245-50. Epub 2007 Nov 12.

PMID:
18082763
32.
33.

Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants.

Ruiz de Escudero I, Estela A, Escriche B, Caballero P.

Appl Environ Microbiol. 2007 Jan;73(1):337-40. Epub 2006 Nov 3.

34.

Common genomic structure for the Lepidoptera cadherin-like genes.

Bel Y, Escriche B.

Gene. 2006 Oct 15;381:71-80. Epub 2006 Jul 18.

PMID:
16905280
35.

Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae.

Ruiz de Escudero I, Estela A, Porcar M, Martínez C, Oguiza JA, Escriche B, Ferré J, Caballero P.

Appl Environ Microbiol. 2006 Jul;72(7):4796-804.

36.
37.

Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac.

Sayyed AH, Gatsi R, Ibiza-Palacios MS, Escriche B, Wright DJ, Crickmore N.

Appl Environ Microbiol. 2005 Nov;71(11):6863-9.

38.

Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella.

Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ.

Appl Environ Microbiol. 2004 Dec;70(12):7010-7.

39.
40.

Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae).

Liu YB, Tabashnik BE, Masson L, Escriche B, Ferré J.

J Econ Entomol. 2000 Feb;93(1):1-6.

PMID:
14658503
41.

Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella).

González-Cabrera J, Escriche B, Tabashnik BE, Ferré J.

Insect Biochem Mol Biol. 2003 Sep;33(9):929-35.

PMID:
12915184
42.

Variation in susceptibility to Bacillus thuringiensis toxins among unselected strains of Plutella xylostella.

González-Cabrera J, Herrero S, Sayyed AH, Escriche B, Liu YB, Meyer SK, Wright DJ, Tabashnik BE, Ferré J.

Appl Environ Microbiol. 2001 Oct;67(10):4610-3.

44.

Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C.

Zhao JZ, Collins HL, Tang JD, Cao J, Earle ED, Roush RT, Herrero S, Escriche B, Ferré J, Shelton AM.

Appl Environ Microbiol. 2000 Sep;66(9):3784-9.

45.

Effect of Bacillus thuringiensis toxins on the midgut of the nun moth Lymantria monacha.

Rausell C, De Decker N, García-Robles I, Escriche B, Van Kerkhove E, Real MD, Martínez-Ramírez AC.

J Invertebr Pathol. 2000 May;75(4):288-91.

PMID:
10843836
47.
48.

Ligand blot identification of a Manduca sexta midgut binding protein specific to three Bacillus thuringiensis CryIA-type ICPs.

Martínez-Ramírez AC, González-Nebauer S, Escriche B, Real MD.

Biochem Biophys Res Commun. 1994 Jun 15;201(2):782-7.

PMID:
8003015
49.

Supplemental Content

Loading ...
Support Center