Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Escabí MA[au]:

Search results

Items: 34

1.

A temporal integration mechanism enhances frequency selectivity of broadband inputs to inferior colliculus.

Chen C, Read HL, Escabí MA.

PLoS Biol. 2019 Jun 24;17(6):e2005861. doi: 10.1371/journal.pbio.2005861. eCollection 2019 Jun.

2.

A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields.

Osman AF, Lee CM, Escabí MA, Read HL.

J Neurosci. 2018 Aug 1;38(31):6967-6982. doi: 10.1523/JNEUROSCI.2871-17.2018. Epub 2018 Jun 28.

3.

Origins of scale invariance in vocalization sequences and speech.

Khatami F, Wöhr M, Read HL, Escabí MA.

PLoS Comput Biol. 2018 Apr 16;14(4):e1005996. doi: 10.1371/journal.pcbi.1005996. eCollection 2018 Apr.

4.

Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields.

Lee CM, Osman AF, Volgushev M, Escabí MA, Read HL.

J Neurophysiol. 2016 Apr;115(4):1886-904. doi: 10.1152/jn.00784.2015. Epub 2016 Feb 3.

5.

Age-related decrease in theta and gamma coherence across dorsal ca1 pyramidale and radiatum layers.

Jacobson TK, Schmidt B, Hinman JR, Escabí MA, Markus EJ.

Hippocampus. 2015 Nov;25(11):1327-35. doi: 10.1002/hipo.22439. Epub 2015 Apr 9.

PMID:
25758244
6.

A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings.

Escabí MA, Read HL, Viventi J, Kim DH, Higgins NC, Storace DA, Liu AS, Gifford AM, Burke JF, Campisi M, Kim YS, Avrin AE, Spiegel Jan Vd, Huang Y, Li M, Wu J, Rogers JA, Litt B, Cohen YE.

J Neurophysiol. 2014 Sep 15;112(6):1566-83. doi: 10.1152/jn.00179.2013. Epub 2014 Jun 11.

7.

Novel acoustic stimuli can alter locomotor speed to hippocampal theta relationship.

Long LL, Hinman JR, Chen CM, Stevenson IH, Read HL, Escabi MA, Chrobak JJ.

Hippocampus. 2014 Sep;24(9):1053-8. doi: 10.1002/hipo.22308. Epub 2014 Jun 16.

PMID:
24866396
8.

Theta dynamics in rat: speed and acceleration across the Septotemporal axis.

Long LL, Hinman JR, Chen CM, Escabi MA, Chrobak JJ.

PLoS One. 2014 May 19;9(5):e97987. doi: 10.1371/journal.pone.0097987. eCollection 2014.

9.

Novel space alters theta and gamma synchrony across the longitudinal axis of the hippocampus.

Penley SC, Hinman JR, Long LL, Markus EJ, Escabí MA, Chrobak JJ.

Front Syst Neurosci. 2013 Jun 25;7:20. doi: 10.3389/fnsys.2013.00020. eCollection 2013.

10.

Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues.

Zheng Y, Escabí MA.

J Neurophysiol. 2013 Aug;110(3):587-606. doi: 10.1152/jn.01080.2010. Epub 2013 May 1.

11.

Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.

Schmidt B, Hinman JR, Jacobson TK, Szkudlarek E, Argraves M, Escabí MA, Markus EJ.

J Neurosci. 2013 Apr 3;33(14):6212-24. doi: 10.1523/JNEUROSCI.2915-12.2013.

12.

Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation.

Jacobson TK, Howe MD, Schmidt B, Hinman JR, Escabí MA, Markus EJ.

J Neurophysiol. 2013 Apr;109(7):1852-65. doi: 10.1152/jn.00409.2012. Epub 2013 Jan 9.

13.

Ketamine disrupts theta synchrony across the septotemporal axis of the CA1 region of hippocampus.

Hinman JR, Penley SC, Escabí MA, Chrobak JJ.

J Neurophysiol. 2013 Jan;109(2):570-9. doi: 10.1152/jn.00561.2012. Epub 2012 Oct 31.

14.

Spectrotemporal sound preferences of neighboring inferior colliculus neurons: implications for local circuitry and processing.

Chen C, Rodriguez FC, Read HL, Escabí MA.

Front Neural Circuits. 2012 Sep 27;6:62. doi: 10.3389/fncir.2012.00062. eCollection 2012.

15.

Precise feature based time scales and frequency decorrelation lead to a sparse auditory code.

Chen C, Read HL, Escabí MA.

J Neurosci. 2012 Jun 20;32(25):8454-68. doi: 10.1523/JNEUROSCI.6506-11.2012. Erratum in: J Neurosci. 2012 Sep 26;32(39):13640.

16.

Theta and gamma coherence across the septotemporal axis during distinct behavioral states.

Penley SC, Hinman JR, Sabolek HR, Escabí MA, Markus EJ, Chrobak JJ.

Hippocampus. 2012 May;22(5):1164-75. doi: 10.1002/hipo.20962. Epub 2011 Jul 11.

PMID:
21748821
17.

Septotemporal variation in dynamics of theta: speed and habituation.

Hinman JR, Penley SC, Long LL, Escabí MA, Chrobak JJ.

J Neurophysiol. 2011 Jun;105(6):2675-86. doi: 10.1152/jn.00837.2010. Epub 2011 Mar 16.

18.

Distinct core thalamocortical pathways to central and dorsal primary auditory cortex.

Read HL, Nauen DW, Escabí MA, Miller LM, Schreiner CE, Winer JA.

Hear Res. 2011 Apr;274(1-2):95-104. doi: 10.1016/j.heares.2010.11.010. Epub 2010 Dec 8.

19.

Neural modulation tuning characteristics scale to efficiently encode natural sound statistics.

Rodríguez FA, Chen C, Read HL, Escabí MA.

J Neurosci. 2010 Nov 24;30(47):15969-80. doi: 10.1523/JNEUROSCI.0966-10.2010.

20.

Specialization of binaural responses in ventral auditory cortices.

Higgins NC, Storace DA, Escabí MA, Read HL.

J Neurosci. 2010 Oct 27;30(43):14522-32. doi: 10.1523/JNEUROSCI.2561-10.2010.

21.

Spectral and temporal modulation tradeoff in the inferior colliculus.

Rodríguez FA, Read HL, Escabí MA.

J Neurophysiol. 2010 Feb;103(2):887-903. doi: 10.1152/jn.00813.2009. Epub 2009 Dec 16.

22.

Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape.

Zheng Y, Escabí MA.

J Neurosci. 2008 Dec 24;28(52):14230-44. doi: 10.1523/JNEUROSCI.2882-08.2008.

23.

Illusory spectrotemporal ripples created with binaurally correlated noise.

Nassiri R, Escabí MA.

J Acoust Soc Am. 2008 Apr;123(4):EL92-8. doi: 10.1121/1.2800893.

PMID:
18396927
24.

Spectral processing deficits in belt auditory cortex following early postnatal lesions of somatosensory cortex.

Higgins NC, Escabí MA, Rosen GD, Galaburda AM, Read HL.

Neuroscience. 2008 May 2;153(2):535-49. doi: 10.1016/j.neuroscience.2008.01.073. Epub 2008 Feb 16.

PMID:
18384966
25.

Early cortical damage in rat somatosensory cortex alters acoustic feature representation in primary auditory cortex.

Escabí MA, Higgins NC, Galaburda AM, Rosen GD, Read HL.

Neuroscience. 2007 Dec 19;150(4):970-83. Epub 2007 Sep 8.

PMID:
18022327
26.

Neural mechanisms for spectral analysis in the auditory midbrain, thalamus, and cortex.

Escabí MA, Read HL.

Int Rev Neurobiol. 2005;70:207-52. Review. No abstract available.

PMID:
16472636
27.

The contribution of spike threshold to acoustic feature selectivity, spike information content, and information throughput.

Escabí MA, Nassiri R, Miller LM, Schreiner CE, Read HL.

J Neurosci. 2005 Oct 12;25(41):9524-34.

28.

Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus.

Escabí MA, Miller LM, Read HL, Schreiner CE.

J Neurosci. 2003 Dec 17;23(37):11489-504.

29.

Representation of spectrotemporal sound information in the ascending auditory pathway.

Escabí MA, Read HL.

Biol Cybern. 2003 Nov;89(5):350-62. Epub 2003 Dec 4. Review.

PMID:
14669015
30.

Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.

Qiu A, Schreiner CE, Escabí MA.

J Neurophysiol. 2003 Jul;90(1):456-76. Epub 2003 Mar 26.

31.

Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.

Escabi MA, Schreiner CE.

J Neurosci. 2002 May 15;22(10):4114-31.

32.

Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.

Miller LM, Escabí MA, Read HL, Schreiner CE.

J Neurophysiol. 2002 Jan;87(1):516-27.

33.

Functional convergence of response properties in the auditory thalamocortical system.

Miller LM, Escabí MA, Read HL, Schreiner CE.

Neuron. 2001 Oct 11;32(1):151-60.

34.

Feature selectivity and interneuronal cooperation in the thalamocortical system.

Miller LM, Escabí MA, Schreiner CE.

J Neurosci. 2001 Oct 15;21(20):8136-44.

Supplemental Content

Loading ...
Support Center