Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 105

1.

The 5' Untranslated Region of the EFG1 Transcript Promotes Its Translation To Regulate Hyphal Morphogenesis in Candida albicans.

Desai PR, Lengeler K, Kapitan M, Janßen SM, Alepuz P, Jacobsen ID, Ernst JF.

mSphere. 2018 Jul 5;3(4). pii: e00280-18. doi: 10.1128/mSphere.00280-18.

2.

Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9.

Pohlers S, Martin R, Krüger T, Hellwig D, Hänel F, Kniemeyer O, Saluz HP, Van Dijck P, Ernst JF, Brakhage A, Mühlschlegel FA, Kurzai O.

MBio. 2017 Jan 31;8(1). pii: e02211-16. doi: 10.1128/mBio.02211-16.

3.

Dom34 Links Translation to Protein O-mannosylation.

van Wijlick L, Geissen R, Hilbig JS, Lagadec Q, Cantero PD, Pfeifer E, Juchimiuk M, Kluge S, Wickert S, Alepuz P, Ernst JF.

PLoS Genet. 2016 Oct 21;12(10):e1006395. doi: 10.1371/journal.pgen.1006395. eCollection 2016 Oct.

4.

Candida albicans responds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling.

van Wijlick L, Swidergall M, Brandt P, Ernst JF.

Mol Microbiol. 2016 Dec;102(5):827-849. doi: 10.1111/mmi.13494. Epub 2016 Oct 7.

5.
6.

Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications.

Buerth C, Tielker D, Ernst JF.

Appl Microbiol Biotechnol. 2016 Aug;100(16):6981-90. doi: 10.1007/s00253-016-7700-8. Epub 2016 Jun 29. Review.

PMID:
27357226
7.

Click beetle luciferases as dual reporters of gene expression in Candida albicans.

Kapitan M, Eichhof I, Lagadec Q, Ernst JF.

Microbiology. 2016 Aug;162(8):1310-1320. doi: 10.1099/mic.0.000329. Epub 2016 Jun 23.

PMID:
27339610
8.

Oral Tolerance Induction in Experimental Autoimmune Encephalomyelitis with Candida utilis Expressing the Immunogenic MOG35-55 Peptide.

Buerth C, Mausberg AK, Heininger MK, Hartung HP, Kieseier BC, Ernst JF.

PLoS One. 2016 May 9;11(5):e0155082. doi: 10.1371/journal.pone.0155082. eCollection 2016.

9.

Oxygen-independent FbFP: Fluorescent sentinel and oxygen sensor component in Saccharomyces cerevisiae and Candida albicans.

Eichhof I, Ernst JF.

Fungal Genet Biol. 2016 Jul;92:14-25. doi: 10.1016/j.fgb.2016.04.004. Epub 2016 Apr 25.

PMID:
27126475
10.

Hypoxia and Temperature Regulated Morphogenesis in Candida albicans.

Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF.

PLoS Genet. 2015 Aug 14;11(8):e1005447. doi: 10.1371/journal.pgen.1005447. eCollection 2015 Aug.

11.

The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms.

Rupp O, Brinkrolf K, Buerth C, Kunigo M, Schneider J, Jaenicke S, Goesmann A, Pühler A, Jaeger KE, Ernst JF.

J Biotechnol. 2015 Oct 10;211:20-30. doi: 10.1016/j.jbiotec.2015.06.423. Epub 2015 Jul 3.

PMID:
26150016
12.

Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis.

Kunigo M, Buerth C, Ernst JF.

Appl Microbiol Biotechnol. 2015 Oct;99(19):8055-64. doi: 10.1007/s00253-015-6703-1. Epub 2015 Jun 9.

PMID:
26051669
13.

Signaling domains of mucin Msb2 in Candida albicans.

Swidergall M, van Wijlick L, Ernst JF.

Eukaryot Cell. 2015 Apr;14(4):359-70. doi: 10.1128/EC.00264-14. Epub 2015 Jan 30.

14.

A surprising role for the Sch9 protein kinase in chromosome segregation in Candida albicans.

Varshney N, Schaekel A, Singha R, Chakraborty T, van Wijlick L, Ernst JF, Sanyal K.

Genetics. 2015 Mar;199(3):671-4. doi: 10.1534/genetics.114.173542. Epub 2015 Jan 15.

15.

Interplay between Candida albicans and the antimicrobial peptide armory.

Swidergall M, Ernst JF.

Eukaryot Cell. 2014 Aug;13(8):950-7. doi: 10.1128/EC.00093-14. Epub 2014 Jun 20. Review.

16.

Candida albicans cis-prenyltransferase Rer2 is required for protein glycosylation, cell wall integrity and hypha formation.

Juchimiuk M, Orłowski J, Gawarecka K, Świeżewska E, Ernst JF, Palamarczyk G.

Fungal Genet Biol. 2014 Aug;69:1-12. doi: 10.1016/j.fgb.2014.05.004. Epub 2014 May 27.

PMID:
24875421
17.

Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity.

Buerth C, Kovacic F, Stock J, Terfrüchte M, Wilhelm S, Jaeger KE, Feldbrügge M, Schipper K, Ernst JF, Tielker D.

Appl Microbiol Biotechnol. 2014 Jun;98(11):4963-73. doi: 10.1007/s00253-013-5493-6. Epub 2014 Jan 28.

PMID:
24469105
18.

Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans.

Schaekel A, Desai PR, Ernst JF.

BMC Genomics. 2013 Dec 1;14:842. doi: 10.1186/1471-2164-14-842.

19.

Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides.

Swidergall M, Ernst AM, Ernst JF.

Antimicrob Agents Chemother. 2013 Aug;57(8):3917-22. doi: 10.1128/AAC.00862-13. Epub 2013 Jun 3.

20.

Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions.

Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, Rupp J, Däubener W.

PLoS One. 2013 May 13;8(5):e63301. doi: 10.1371/journal.pone.0063301. Print 2013.

21.

Heterologous protein secretion by Candida utilis.

Kunigo M, Buerth C, Tielker D, Ernst JF.

Appl Microbiol Biotechnol. 2013 Aug;97(16):7357-68. doi: 10.1007/s00253-013-4890-1. Epub 2013 Apr 24.

PMID:
23613034
22.

Msb2 shedding protects Candida albicans against antimicrobial peptides.

Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Román E, Pla J, Ernst JF.

PLoS Pathog. 2012 Feb;8(2):e1002501. doi: 10.1371/journal.ppat.1002501. Epub 2012 Feb 2.

23.

Target specificity of the Candida albicans Efg1 regulator.

Lassak T, Schneider E, Bussmann M, Kurtz D, Manak JR, Srikantha T, Soll DR, Ernst JF.

Mol Microbiol. 2011 Nov;82(3):602-18. doi: 10.1111/j.1365-2958.2011.07837.x. Epub 2011 Oct 10.

24.

Growth-dependent secretome of Candida utilis.

Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D.

Microbiology. 2011 Sep;157(Pt 9):2493-503. doi: 10.1099/mic.0.049320-0. Epub 2011 Jun 16.

PMID:
21680638
25.

Signaling the glycoshield: maintenance of the Candida albicans cell wall.

Ernst JF, Pla J.

Int J Med Microbiol. 2011 Jun;301(5):378-83. doi: 10.1016/j.ijmm.2011.04.003. Epub 2011 May 8. Review.

PMID:
21555242
26.

Damage to the glycoshield activates PMT-directed O-mannosylation via the Msb2-Cek1 pathway in Candida albicans.

Cantero PD, Ernst JF.

Mol Microbiol. 2011 May;80(3):715-25. doi: 10.1111/j.1365-2958.2011.07604.x. Epub 2011 Mar 16.

27.

Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans.

Stichternoth C, Fraund A, Setiadi E, Giasson L, Vecchiarelli A, Ernst JF.

Eukaryot Cell. 2011 Apr;10(4):502-11. doi: 10.1128/EC.00289-10. Epub 2011 Feb 18.

28.

Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans.

Moreno I, Martinez-Esparza M, Laforet LC, Sentandreu R, Ernst JF, Valentin E.

Yeast. 2010 Feb;27(2):77-87. doi: 10.1002/yea.1733.

29.

Characterization of the PMT gene family in Cryptococcus neoformans.

Willger SD, Ernst JF, Alspaugh JA, Lengeler KB.

PLoS One. 2009 Jul 27;4(7):e6321. doi: 10.1371/journal.pone.0006321.

30.

Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans.

Román E, Cottier F, Ernst JF, Pla J.

Eukaryot Cell. 2009 Aug;8(8):1235-49. doi: 10.1128/EC.00081-09. Epub 2009 Jun 19.

31.

Flavin mononucleotide-based fluorescent protein as an oxygen-independent reporter in Candida albicans and Saccharomyces cerevisiae.

Tielker D, Eichhof I, Jaeger KE, Ernst JF.

Eukaryot Cell. 2009 Jun;8(6):913-5. doi: 10.1128/EC.00394-08. Epub 2009 Apr 17.

32.

Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans.

Stichternoth C, Ernst JF.

Appl Environ Microbiol. 2009 Jun;75(11):3663-72. doi: 10.1128/AEM.00098-09. Epub 2009 Apr 3.

33.

Responses to hypoxia in fungal pathogens.

Ernst JF, Tielker D.

Cell Microbiol. 2009 Feb;11(2):183-90. doi: 10.1111/j.1462-5822.2008.01259.x. Epub 2008 Nov 3. Review.

PMID:
19016786
34.

Beta-1,2 oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N- and O-glycosylation processes.

Fradin C, Slomianny MC, Mille C, Masset A, Robert R, Sendid B, Ernst JF, Michalski JC, Poulain D.

Infect Immun. 2008 Oct;76(10):4509-17. doi: 10.1128/IAI.00368-08. Epub 2008 Jul 21.

35.

Functional mapping of the Candida albicans Efg1 regulator.

Noffz CS, Liedschulte V, Lengeler K, Ernst JF.

Eukaryot Cell. 2008 May;7(5):881-93. doi: 10.1128/EC.00033-08. Epub 2008 Mar 28.

36.

Protein-O-mannosyltransferases in virulence and development.

Lengeler KB, Tielker D, Ernst JF.

Cell Mol Life Sci. 2008 Feb;65(4):528-44. Review.

PMID:
17975704
37.

Immune response to Candida albicans is preserved despite defect in O-mannosylation of secretory proteins.

Corbucci C, Cenci E, Skrzypek F, Gabrielli E, Mosci P, Ernst JF, Bistoni F, Vecchiarelli A.

Med Mycol. 2007 Dec;45(8):709-19.

PMID:
17885949
38.

Large molecules as anti-adhesive compounds against pathogens.

Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A.

J Pharm Pharmacol. 2007 Jun;59(6):777-86.

PMID:
17637170
39.

Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans.

Cantero PD, Lengsfeld C, Prill SK, Subanović M, Román E, Pla J, Ernst JF.

Mol Microbiol. 2007 May;64(4):1115-28.

40.

Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans.

Peltroche-Llacsahuanga H, Goyard S, d'Enfert C, Prill SK, Ernst JF.

Antimicrob Agents Chemother. 2006 Oct;50(10):3488-91.

41.

Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.

Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF.

J Mol Biol. 2006 Aug 18;361(3):399-411. Epub 2006 Jul 7.

PMID:
16854431
42.

Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases.

Rouabhia M, Schaller M, Corbucci C, Vecchiarelli A, Prill SK, Giasson L, Ernst JF.

Infect Immun. 2005 Aug;73(8):4571-80.

43.

Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans.

Pasrija R, Krishnamurthy S, Prasad T, Ernst JF, Prasad R.

J Antimicrob Chemother. 2005 Jun;55(6):905-13. Epub 2005 Apr 21.

PMID:
15845783
44.

PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance.

Prill SK, Klinkert B, Timpel C, Gale CA, Schröppel K, Ernst JF.

Mol Microbiol. 2005 Jan;55(2):546-60.

45.

CandidaDB: a genome database for Candida albicans pathogenomics.

d'Enfert C, Goyard S, Rodriguez-Arnaveilhe S, Frangeul L, Jones L, Tekaia F, Bader O, Albrecht A, Castillo L, Dominguez A, Ernst JF, Fradin C, Gaillardin C, Garcia-Sanchez S, de Groot P, Hube B, Klis FM, Krishnamurthy S, Kunze D, Lopez MC, Mavor A, Martin N, Moszer I, Onésime D, Perez Martin J, Sentandreu R, Valentin E, Brown AJ.

Nucleic Acids Res. 2005 Jan 1;33(Database issue):D353-7.

46.
47.

APSES proteins regulate morphogenesis and metabolism in Candida albicans.

Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF.

Mol Biol Cell. 2004 Jul;15(7):3167-80.

48.

Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans.

Krishnamurthy S, Plaine A, Albert J, Prasad T, Prasad R, Ernst JF.

Microbiology. 2004 Jun;150(Pt 6):1991-2003.

PMID:
15184585
49.

Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene.

Tebarth B, Doedt T, Krishnamurthy S, Weide M, Monterola F, Dominguez A, Ernst JF.

J Mol Biol. 2003 Jun 20;329(5):949-62.

PMID:
12798685
50.

Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.

Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H.

Biochem J. 2003 Apr 15;371(Pt 2):505-13.

Supplemental Content

Loading ...
Support Center