Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic pulmonary arterial hypertension.

Papp R, Nagaraj C, Zabini D, Nagy BM, Lengyel M, Skofic Maurer D, Sharma N, Egemnazarov B, Kovacs G, Kwapiszewska G, Marsh LM, Hrzenjak A, Höfler G, Didiasova M, Wygrecka M, Sievers LK, Szucs P, Enyedi P, Ghanim B, Klepetko W, Olschewski H, Olschewski A.

Eur Respir J. 2019 Jun 5;53(6). pii: 1800965. doi: 10.1183/13993003.00965-2018. Print 2019 Jun.

PMID:
31023847
2.

TRESK (K2P18.1) Background Potassium Channel Is Activated by Novel-Type Protein Kinase C via Dephosphorylation.

Pergel E, Lengyel M, Enyedi P, Czirják G.

Mol Pharmacol. 2019 Jun;95(6):661-672. doi: 10.1124/mol.119.116269. Epub 2019 Apr 16.

PMID:
30992311
3.

Chemically Modified Derivatives of the Activator Compound Cloxyquin Exert Inhibitory Effect on TRESK (K2P18.1) Background Potassium Channel.

Lengyel M, Erdélyi F, Pergel E, Bálint-Polonka Á, Dobolyi A, Bozsaki P, Dux M, Király K, Hegedűs T, Czirják G, Mátyus P, Enyedi P.

Mol Pharmacol. 2019 Jun;95(6):652-660. doi: 10.1124/mol.118.115626. Epub 2019 Apr 12.

PMID:
30979812
4.

TRESK background potassium channel is not gated at the helix bundle crossing near the cytoplasmic end of the pore.

Lengyel M, Czirják G, Enyedi P.

PLoS One. 2018 May 15;13(5):e0197622. doi: 10.1371/journal.pone.0197622. eCollection 2018.

5.

TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications.

Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirják G, Enyedi P, Mathie A.

Eur Respir J. 2017 Nov 9;50(5). pii: 1700754. doi: 10.1183/13993003.00754-2017. Print 2017 Nov. Review.

6.

Selective and state-dependent activation of TRESK (K2P 18.1) background potassium channel by cloxyquin.

Lengyel M, Dobolyi A, Czirják G, Enyedi P.

Br J Pharmacol. 2017 Jul;174(13):2102-2113. doi: 10.1111/bph.13821. Epub 2017 May 18.

7.

Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits.

Lengyel M, Czirják G, Enyedi P.

J Biol Chem. 2016 Jun 24;291(26):13649-61. doi: 10.1074/jbc.M116.719039. Epub 2016 Apr 28.

8.

Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red.

Braun G, Lengyel M, Enyedi P, Czirják G.

Br J Pharmacol. 2015 Apr;172(7):1728-38. doi: 10.1111/bph.13019. Epub 2015 Jan 8.

9.

Properties, regulation, pharmacology, and functions of the K₂p channel, TRESK.

Enyedi P, Czirják G.

Pflugers Arch. 2015 May;467(5):945-58. doi: 10.1007/s00424-014-1634-8. Epub 2014 Nov 5. Review.

PMID:
25366493
10.

The LQLP calcineurin docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel.

Czirják G, Enyedi P.

J Biol Chem. 2014 Oct 24;289(43):29506-18. doi: 10.1074/jbc.M114.577684. Epub 2014 Sep 8.

11.

Tubulin binds to the cytoplasmic loop of TRESK background K⁺ channel in vitro.

Enyedi P, Veres I, Braun G, Czirják G.

PLoS One. 2014 May 15;9(5):e97854. doi: 10.1371/journal.pone.0097854. eCollection 2014.

12.

TRESK background K(+) channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

Braun G, Nemcsics B, Enyedi P, Czirják G.

PLoS One. 2011;6(12):e28119. doi: 10.1371/journal.pone.0028119. Epub 2011 Dec 1.

13.

TRESK: the lone ranger of two-pore domain potassium channels.

Enyedi P, Braun G, Czirják G.

Mol Cell Endocrinol. 2012 Apr 28;353(1-2):75-81. doi: 10.1016/j.mce.2011.11.009. Epub 2011 Nov 17. Review.

PMID:
22115960
14.

Large deletions of the KCNV2 gene are common in patients with cone dystrophy with supernormal rod response.

Wissinger B, Schaich S, Baumann B, Bonin M, Jägle H, Friedburg C, Varsányi B, Hoyng CB, Dollfus H, Heckenlively JR, Rosenberg T, Rudolph G, Kellner U, Salati R, Plomp A, De Baere E, Andrassi-Darida M, Sauer A, Wolf C, Zobor D, Bernd A, Leroy BP, Enyedi P, Cremers FP, Lorenz B, Zrenner E, Kohl S.

Hum Mutat. 2011 Dec;32(12):1398-406. doi: 10.1002/humu.21580. Epub 2011 Sep 12.

15.

Molecular background of leak K+ currents: two-pore domain potassium channels.

Enyedi P, Czirják G.

Physiol Rev. 2010 Apr;90(2):559-605. doi: 10.1152/physrev.00029.2009. Review.

16.

TRESK background K(+) channel is inhibited by phosphorylation via two distinct pathways.

Czirják G, Enyedi P.

J Biol Chem. 2010 May 7;285(19):14549-57. doi: 10.1074/jbc.M110.102020. Epub 2010 Mar 9.

17.

Role of Nox2 in elimination of microorganisms.

Rada B, Hably C, Meczner A, Timár C, Lakatos G, Enyedi P, Ligeti E.

Semin Immunopathol. 2008 Jul;30(3):237-53. doi: 10.1007/s00281-008-0126-3. Epub 2008 Jun 24. Review.

PMID:
18574584
18.

Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation.

Czirják G, Vuity D, Enyedi P.

J Biol Chem. 2008 Jun 6;283(23):15672-80. doi: 10.1074/jbc.M800712200. Epub 2008 Apr 8.

19.

Characterization of the heteromeric potassium channel formed by kv2.1 and the retinal subunit kv8.2 in Xenopus oocytes.

Czirják G, Tóth ZE, Enyedi P.

J Neurophysiol. 2007 Sep;98(3):1213-22. Epub 2007 Jul 25.

20.

Neonatal severe hyperparathyroidism associated with a novel de novo heterozygous R551K inactivating mutation and a heterozygous A986S polymorphism of the calcium-sensing receptor gene.

Tõke J, Czirják G, Patócs A, Enyedi B, Gergics P, Csákváry V, Enyedi P, Tóth M.

Clin Endocrinol (Oxf). 2007 Sep;67(3):385-92. Epub 2007 Jun 7.

PMID:
17555508
21.

The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels.

Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirják G, Enyedi P, England SK, Moreland JG, Ligeti E, Nauseef WM, DeCoursey TE.

J Gen Physiol. 2006 Jun;127(6):659-72. Epub 2006 May 15.

22.
23.

Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels.

Czirják G, Enyedi P.

Mol Pharmacol. 2006 Mar;69(3):1024-32. Epub 2005 Dec 14.

PMID:
16354767
24.

PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels.

Lopes CM, Rohács T, Czirják G, Balla T, Enyedi P, Logothetis DE.

J Physiol. 2005 Apr 1;564(Pt 1):117-29. Epub 2005 Jan 27.

25.

The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin.

Czirják G, Tóth ZE, Enyedi P.

J Biol Chem. 2004 Apr 30;279(18):18550-8. Epub 2004 Feb 23.

26.
27.

TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells.

Czirják G, Enyedi P.

Mol Endocrinol. 2002 Mar;16(3):621-9.

PMID:
11875121
28.

Analysis of mutations in the plasma cholinesterase gene of patients with a history of prolonged neuromuscular block during anesthesia.

Barta C, Sasvari-Szekely M, Devai A, Kovacs E, Staub M, Enyedi P.

Mol Genet Metab. 2001 Dec;74(4):484-8.

PMID:
11749053
29.

Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits.

Czirják G, Enyedi P.

J Biol Chem. 2002 Feb 15;277(7):5426-32. Epub 2001 Dec 3.

30.

Inhibition of TASK-1 potassium channel by phospholipase C.

Czirják G, Petheo GL, Spät A, Enyedi P.

Am J Physiol Cell Physiol. 2001 Aug;281(2):C700-8.

31.

TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II.

Czirják G, Fischer T, Spät A, Lesage F, Enyedi P.

Mol Endocrinol. 2000 Jun;14(6):863-74.

PMID:
10847588
32.

Cloning and functional expression of the cytoplasmic form of rat aminopeptidase P.

Czirják G, Burkhart WA, Moyer MB, Antal J, Shears SB, Enyedi P.

Biochim Biophys Acta. 1999 Mar 19;1444(3):326-36.

PMID:
10095056
33.

Selective inhibition of potassium-stimulated rat adrenal glomerulosa cells by ruthenium red.

Szabadkai G, Várnai P, Enyedi P.

Biochem Pharmacol. 1999 Jan 15;57(2):209-18.

PMID:
9890570
34.

Expression of voltage-dependent calcium channel alpha1 subunits in rat adrenal capsular tissue and single glomerulosa cells.

Szabadkai G, Horváth A, Spat A, Enyedi P.

Endocr Res. 1998 Aug-Nov;24(3-4):425-6. No abstract available.

PMID:
9888519
35.

Voltage dependent calcium channels in adrenal glomerulosa cells and in insulin producing cells.

Horváth A, Szabadkai G, Várnai P, Arányi T, Wollheim CB, Spät A, Enyedi P.

Cell Calcium. 1998 Jan;23(1):33-42.

PMID:
9570008
36.

The role of voltage-dependent calcium channels in angiotensin-stimulated glomerulosa cells.

Spät A, Rohács T, Horváth A, Szabadkai G, Enyedi P.

Endocr Res. 1996 Nov;22(4):569-76.

PMID:
8969913
37.

Expression of inositol 1,4,5-trisphosphate receptors in rat adrenocortical zones.

Szabadkai G, Horváth A, Rohács T, Vimláti L, Spät A, Enyedi P.

J Steroid Biochem Mol Biol. 1996 Jan;57(1-2):13-7.

PMID:
8645612
38.

Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4.

Vajanaphanich M, Schultz C, Rudolf MT, Wasserman M, Enyedi P, Craxton A, Shears SB, Tsien RY, Barrett KE, Traynor-Kaplan A.

Nature. 1994 Oct 20;371(6499):711-4.

PMID:
7935818
39.

Inositol 1,4,5-trisphosphate receptor subtypes in adrenal glomerulosa cells.

Enyedi P, Szabadkai G, Horváth A, Szilágyi L, Gráf L, Spät A.

Endocrinology. 1994 Jun;134(6):2354-9.

PMID:
8194461
40.

Inositol 1,4,5-trisphosphate binding sites copurify with the putative Ca-storage protein calreticulin in rat liver.

Enyedi P, Szabadkai G, Krause KH, Lew DP, Spät A.

Cell Calcium. 1993 Jun;14(6):485-92.

PMID:
8395340
41.

Angiotensin-II inhibits Na+/K+ pump in rat adrenal glomerulosa cells: possible contribution to stimulation of aldosterone production.

Hajnóczky G, Csordás G, Hunyady L, Kalapos MP, Balla T, Enyedi P, Spät A.

Endocrinology. 1992 Mar;130(3):1637-44.

PMID:
1311245
42.

Kinetics of cytosolic calcium and aldosterone responses in rat adrenal glomerulosa cells.

Quinn SJ, Enyedi P, Tillotson DL, Williams GH.

Endocrinology. 1991 Nov;129(5):2431-41.

PMID:
1935777
43.

Generation and role of calcium signal in adrenal glomerulosa cells.

Spät A, Enyedi P, Hajnóczky G, Hunyady L.

Exp Physiol. 1991 Nov;76(6):859-85. Review. No abstract available.

44.

Thapsigargin-induced increase in cytoplasmic Ca2+ concentration and aldosterone production in rat adrenal glomerulosa cells: interaction with potassium and angiotensin-II.

Hajnóczky G, Várnai P, Holló Z, Christensen SB, Balla T, Enyedi P, Spät A.

Endocrinology. 1991 May;128(5):2639-44.

PMID:
2019269
45.
46.

Sustained stimulation of aldosterone production by angiotensin II is potentiated by nickel.

Spät A, Balla I, Balla T, Enyedi P, Hajnóczky G, Rohács T.

Am J Physiol. 1990 Apr;258(4 Pt 1):E555-61.

PMID:
2333957
47.

Distinct binding sites for Ins(1,4,5)P3 and Ins(1,3,4,5)P4 in bovine parathyroid glands.

Enyedi P, Brown E, Williams G.

Biochem Biophys Res Commun. 1989 Feb 28;159(1):200-8.

PMID:
2784315
50.

Heterogenous inositol tetrakisphosphate binding sites in the adrenal cortex.

Enyedi P, Williams GH.

J Biol Chem. 1988 Jun 15;263(17):7940-2.

Supplemental Content

Loading ...
Support Center