Format

Send to

Choose Destination
Nat Commun. 2018 Apr 13;9(1):1453. doi: 10.1038/s41467-018-03890-w.

Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater.

Author information

1
Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, UPS, 31400, Toulouse, France. florent.hodel@hotmail.fr.
2
Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-090, São Paulo, Brazil. florent.hodel@hotmail.fr.
3
Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, UPS, 31400, Toulouse, France.
4
Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-090, São Paulo, Brazil.
5
Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Université de Nantes, 44322, Nantes, France.
6
Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, Université Paris Diderot, CNRS, UMR 7154, 75005, Paris, France.
7
EGGPG, Département de Géologie, Faculté des Sciences, Université Chouaib Doukkali, 24000, El Jadida, Morocco.

Abstract

The evolution of the seawater oxygen isotopic composition (δ18O) through geological time remains controversial. Yet, the past δ18Oseawater is key to assess past seawater temperatures, providing insights into past climate change and life evolution. Here we provide a new and unprecedentedly precise δ18O value of -1.33 ± 0.98‰ for the Neoproterozoic bottom seawater supporting a constant oxygen isotope composition through time. We demonstrate that the Aït Ahmane ultramafic unit of the ca. 760 Ma Bou Azzer ophiolite (Morocco) host a fossil black smoker-type hydrothermal system. In this system we analyzed an untapped archive for the ocean oxygen isotopic composition consisting in pure magnetite veins directly precipitated from a Neoproterozoic seawater-derived fluid. Our results suggest that, while δ18Oseawater and submarine hydrothermal processes were likely similar to present day, Neoproterozoic oceans were 15-30 °C warmer on the eve of the Sturtian glaciation and the major life diversification that followed.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center