Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53

1.

Proteomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules.

Strodtman KN, Frank S, Stevenson S, Thelen JJ, Emerich DW.

Int J Mol Sci. 2018 Dec 8;19(12). pii: E3947. doi: 10.3390/ijms19123947.

2.
3.

The Bacteroid Periplasm in Soybean Nodules Is an Interkingdom Symbiotic Space.

Strodtman KN, Stevenson SE, Waters JK, Mawhinney TP, Thelen JJ, Polacco JC, Emerich DW.

Mol Plant Microbe Interact. 2017 Dec;30(12):997-1008. doi: 10.1094/MPMI-12-16-0264-R. Epub 2017 Oct 13.

PMID:
29028412
4.

Corrigendum: Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis.

Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW, Triplett EW.

Front Microbiol. 2016 Jun 15;7:952. doi: 10.3389/fmicb.2016.00952. eCollection 2016.

5.

Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis.

Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW, Triplett EW.

Front Microbiol. 2016 Apr 22;7:518. doi: 10.3389/fmicb.2016.00518. eCollection 2016. Erratum in: Front Microbiol. 2016;7:952.

6.

Symbiosomes: temporary moonlighting organelles.

Emerich DW, Krishnan HB.

Biochem J. 2014 May 15;460(1):1-11. doi: 10.1042/BJ20130271. Review.

PMID:
24762136
7.

Soybean ureases, but not that of Bradyrhizobium japonicum, are involved in the process of soybean root nodulation.

Medeiros-Silva M, Franck WL, Borba MP, Pizzato SB, Strodtman KN, Emerich DW, Stacey G, Polacco JC, Carlini CR.

J Agric Food Chem. 2014 Apr 23;62(16):3517-24. doi: 10.1021/jf5000612. Epub 2014 Apr 9.

PMID:
24716625
8.

Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide.

Jeon JM, Lee HI, Donati AJ, So JS, Emerich DW, Chang WS.

Mol Plant Microbe Interact. 2011 Dec;24(12):1472-81. doi: 10.1094/MPMI-03-11-0072.

9.

Proteomic analysis of soybean nodule cytosol.

Oehrle NW, Sarma AD, Waters JK, Emerich DW.

Phytochemistry. 2008 Oct;69(13):2426-38. doi: 10.1016/j.phytochem.2008.07.004. Epub 2008 Aug 29.

PMID:
18757068
10.

Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis.

Sarma AD, Oehrle NW, Emerich DW.

Anal Biochem. 2008 Aug 15;379(2):192-5. doi: 10.1016/j.ab.2008.04.047. Epub 2008 May 8.

PMID:
18510937
11.

An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.

Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G.

Mol Plant Microbe Interact. 2007 Oct;20(10):1298-307.

12.

Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.

Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ.

J Bacteriol. 2007 Oct;189(19):6751-62. Epub 2007 Jul 27. Erratum in: J Bacteriol. 2007 Dec;186(24):9150.

13.

Functional characterization of the Sinorhizobium meliloti acetate metabolism genes aceA, SMc00767, and glcB.

Ramírez-Trujillo JA, Encarnación S, Salazar E, de los Santos AG, Dunn MF, Emerich DW, Calva E, Hernández-Lucas I.

J Bacteriol. 2007 Aug;189(16):5875-84. Epub 2007 May 25.

14.

Statistical assessment for mass-spec protein identification using peptide fingerprinting approach.

Ganapathy A, Wan XF, Wan J, Thelen J, Emerich DW, Stacey G, Xu D.

Conf Proc IEEE Eng Med Biol Soc. 2004;4:3051-4.

PMID:
17270922
15.
16.
17.
18.

Comparative analysis of the Bradyrhizobium japonicum sucA region.

Green LS, Waters JK, Ko S, Emerich DW.

Can J Microbiol. 2003 Apr;49(4):237-43.

PMID:
12897832
20.
21.
22.

Bradyrhizobium japonicum isocitrate dehydrogenase exhibits calcium-dependent hysteresis.

Karr DB, Emerich DW.

Arch Biochem Biophys. 2000 Apr 1;376(1):101-8.

PMID:
10729195
23.

Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids.

Waters JK, Hughes BL 2nd, Purcell LC, Gerhardt KO, Mawhinney TP, Emerich DW.

Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):12038-42.

24.
26.
27.

Protein Synthesis by Bradyrhizobium japonicum Bacteroids Declines as a Function of Nodule Age.

Karr DB, Emerich DW.

Appl Environ Microbiol. 1996 Oct;62(10):3757-61.

28.

Alanine dehydrogenase from soybean nodule bacteroids: purification and properties.

Smith MT, Emerich DW.

Arch Biochem Biophys. 1993 Aug 1;304(2):379-85.

PMID:
8346914
29.

Alanine dehydrogenase from soybean nodule bacteroids. Kinetic mechanism and pH studies.

Smith MT, Emerich DW.

J Biol Chem. 1993 May 25;268(15):10746-53.

30.

Accumulation of the phytoalexin, glyceollin, in root nodules of soybean formed by effective and ineffective strains ofBradyrhizobium japonicum.

Karr DB, Emerich DW, Karr AL.

J Chem Ecol. 1992 Jul;18(7):997-1008. doi: 10.1007/BF00980058.

PMID:
24254143
31.

Fluorescence studies with malate dehydrogenase from Bradyrhizobium japonicum 3I1B-143 bacteroids: a two-tryptophan containing protein.

Ghiron CA, Eftink MR, Waters JK, Emerich DW.

Arch Biochem Biophys. 1990 Nov 15;283(1):102-6.

PMID:
2241162
32.

Carbon Metabolism Enzymes of Rhizobium meliloti Cultures and Bacteroids and Their Distribution within Alfalfa Nodules.

Irigoyen JJ, Sanchez-Diaz M, Emerich DW.

Appl Environ Microbiol. 1990 Aug;56(8):2587-2589.

33.
34.
35.

Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium japonicum bacteroids.

Catanese CA, Emerich DW, Zahler WL.

J Bacteriol. 1989 Sep;171(9):4531-6.

36.
37.

Acetate-Activating Enzymes of Bradyrhizobium japonicum Bacteroids.

Preston GG, Zeiher C, Wall JD, Emerich DW.

Appl Environ Microbiol. 1989 Jan;55(1):165-70.

38.
39.
40.

Acetoacetyl-CoA thiolase of Bradyrhizobium japonicum bacteroids: purification and properties.

Suzuki F, Zahler WL, Emerich DW.

Arch Biochem Biophys. 1987 Apr;254(1):272-81.

PMID:
2883931
41.

Enzymes of the Poly-beta-Hydroxybutyrate and Citric Acid Cycles of Rhizobium japonicum Bacteroids.

Karr DB, Waters JK, Suzuki F, Emerich DW.

Plant Physiol. 1984 Aug;75(4):1158-62.

42.
43.

Interactions of dinitrogenase and dinitrogenase reductase.

Emerich DW, Hageman RV, Burris RH.

Adv Enzymol Relat Areas Mol Biol. 1981;52:1-22. Review. No abstract available.

PMID:
7013431
44.

Investigation of the H(2) Oxidation System in Rhizobium japonicum 122 DES Nodule Bacteroids.

Emerich DW, Ruiz-Argüeso T, Russell SA, Evans HJ.

Plant Physiol. 1980 Dec;66(6):1061-6.

45.

Oxyleghemoglobin-mediated Hydrogen Oxidation by Rhizobium japonicum USDA 122 DES Bacteroids.

Emerich DW, Albrecht SL, Russell SA, Ching T, Evans HJ.

Plant Physiol. 1980 Apr;65(4):605-9.

46.

Hydrogenase in Rhizobium japonicum Increases Nitrogen Fixation by Nodulated Soybeans.

Albrecht SL, Maier RJ, Hanus FJ, Russell SA, Emerich DW, Evans HJ.

Science. 1979 Mar 23;203(4386):1255-7.

PMID:
17841140
47.

Hydrogenase system in legume nodules: a mechanism of providing nitrogenase with energy and protection from oxygen damage.

Ruiz-Argüeso T, Emerich DW, Evans HJ.

Biochem Biophys Res Commun. 1979 Jan 30;86(2):259-64. No abstract available.

PMID:
426786
48.

Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids.

Emerich DW, Ruiz-Argüeso T, Ching TM, Evans HJ.

J Bacteriol. 1979 Jan;137(1):153-60.

49.
50.

Nitrogenase from Bacillus polymyxa. Purification and properties of the component proteins.

Emerich DW, Burris RH.

Biochim Biophys Acta. 1978 Sep 26;536(1):172-83.

PMID:
213121

Supplemental Content

Loading ...
Support Center