Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

A wearable freestanding electrochemical sensing system.

Zhao Y, Wang B, Hojaiji H, Wang Z, Lin S, Yeung C, Lin H, Nguyen P, Chiu K, Salahi K, Cheng X, Tan J, Cerrillos BA, Emaminejad S.

Sci Adv. 2020 Mar 20;6(12):eaaz0007. doi: 10.1126/sciadv.aaz0007. eCollection 2020 Mar.

2.

Design Framework and Sensing System for Noninvasive Wearable Electroactive Drug Monitoring.

Lin S, Wang B, Yu W, Castillo K, Hoffman C, Cheng X, Zhao Y, Gao Y, Wang Z, Lin H, Hojaiji H, Tan J, Emaminejad S.

ACS Sens. 2020 Jan 24;5(1):265-273. doi: 10.1021/acssensors.9b02233. Epub 2020 Jan 7.

PMID:
31909594
3.

A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.

Yeung C, Chen S, King B, Lin H, King K, Akhtar F, Diaz G, Wang B, Zhu J, Sun W, Khademhosseini A, Emaminejad S.

Biomicrofluidics. 2019 Dec 11;13(6):064125. doi: 10.1063/1.5127778. eCollection 2019 Nov.

4.

Natural Perspiration Sampling and in Situ Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing.

Lin S, Wang B, Zhao Y, Shih R, Cheng X, Yu W, Hojaiji H, Lin H, Hoffman C, Ly D, Tan J, Chen Y, Di Carlo D, Milla C, Emaminejad S.

ACS Sens. 2020 Jan 24;5(1):93-102. doi: 10.1021/acssensors.9b01727. Epub 2019 Dec 1.

PMID:
31786928
5.

A wearable electrofluidic actuation system.

Lin H, Hojaiji H, Lin S, Yeung C, Zhao Y, Wang B, Malige M, Wang Y, King K, Yu W, Tan J, Wang Z, Cheng X, Emaminejad S.

Lab Chip. 2019 Sep 10;19(18):2966-2972. doi: 10.1039/c9lc00454h.

PMID:
31397462
6.

A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing.

Lin H, Zhao Y, Lin S, Wang B, Yeung C, Cheng X, Wang Z, Cai T, Yu W, King K, Tan J, Salahi K, Hojaiji H, Emaminejad S.

Lab Chip. 2019 Sep 7;19(17):2844-2853. doi: 10.1039/c9lc00418a. Epub 2019 Jul 30.

PMID:
31359008
7.

Gaining deeper insights into the bioflocculation process occurring in a high loaded membrane bioreactor used for the treatment of synthetic greywater.

Emaminejad SA, Avval SS, Bonakdarpour B.

Chemosphere. 2019 Sep;230:316-326. doi: 10.1016/j.chemosphere.2019.04.178. Epub 2019 May 2.

PMID:
31108443
8.

Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.

Emaminejad S, Gao W, Wu E, Davies ZA, Yin Yin Nyein H, Challa S, Ryan SP, Fahad HM, Chen K, Shahpar Z, Talebi S, Milla C, Javey A, Davis RW.

Proc Natl Acad Sci U S A. 2017 May 2;114(18):4625-4630. doi: 10.1073/pnas.1701740114. Epub 2017 Apr 17.

9.

Portable Cytometry Using Microscale Electronic Sensing.

Emaminejad S, Paik KH, Tabard-Cossa V, Javanmard M.

Sens Actuators B Chem. 2016 Mar 1;224:275-281. Epub 2015 Sep 2.

10.

A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca(2+) and pH.

Nyein HY, Gao W, Shahpar Z, Emaminejad S, Challa S, Chen K, Fahad HM, Tai LC, Ota H, Davis RW, Javey A.

ACS Nano. 2016 Jul 26;10(7):7216-24. doi: 10.1021/acsnano.6b04005. Epub 2016 Jul 8.

11.

Carbon Nanotubes: Printed Carbon Nanotube Electronics and Sensor Systems (Adv. Mater. 22/2016).

Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HY, Takei K, Javey A.

Adv Mater. 2016 Jun;28(22):4396. doi: 10.1002/adma.201670151.

PMID:
27273439
12.

Printed Carbon Nanotube Electronics and Sensor Systems.

Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HY, Takei K, Javey A.

Adv Mater. 2016 Jun;28(22):4397-414. doi: 10.1002/adma.201504958. Epub 2016 Feb 16.

PMID:
26880046
13.

Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, Javey A.

Nature. 2016 Jan 28;529(7587):509-514. doi: 10.1038/nature16521.

14.

Tunable control of antibody immobilization using electric field.

Emaminejad S, Javanmard M, Gupta C, Chang S, Davis RW, Howe RT.

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1995-9. doi: 10.1073/pnas.1424592112. Epub 2015 Feb 3.

15.

Multiplexed actuation using ultra dielectrophoresis for proteomics applications: a comprehensive electrical and electrothermal design methodology.

Emaminejad S, Dutton RW, Davis RW, Javanmard M.

Lab Chip. 2014 Jun 21;14(12):2105-14. doi: 10.1039/c4lc00036f. Epub 2014 May 7.

16.

Depletion of cells and abundant proteins from biological samples by enhanced dielectrophoresis.

Javanmard M, Emaminejad S, Gupta C, Provine J, Davis RW, Howe RT.

Sens Actuators B Chem. 2014 Mar;193:918-924. doi: 10.1016/j.snb.2013.11.100.

17.

Smart surface for elution of protein-protein bound particles: nanonewton dielectrophoretic forces using atomic layer deposited oxides.

Emaminejad S, Javanmard M, Dutton RW, Davis RW.

Anal Chem. 2012 Dec 18;84(24):10793-801. doi: 10.1021/ac302857z. Epub 2012 Dec 6.

18.

Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry.

Emaminejad S, Javanmard M, Dutton RW, Davis RW.

Lab Chip. 2012 Nov 7;12(21):4499-507. doi: 10.1039/c2lc40759k.

19.

Use of negative dielectrophoresis for selective elution of protein-bound particles.

Javanmard M, Emaminejad S, Dutton RW, Davis RW.

Anal Chem. 2012 Feb 7;84(3):1432-8. doi: 10.1021/ac202508u. Epub 2012 Jan 20.

Supplemental Content

Loading ...
Support Center