Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 83

1.

Sequence comparison of Francisella tularensis LVS, LVS-G and LVS-R.

Kurtz SL, Voskanian-Kordi A, Simonyan V, Elkins KL.

Pathog Dis. 2018 Oct 1;76(7). doi: 10.1093/femspd/fty067.

PMID:
30137434
2.

A panel of correlates predicts vaccine-induced protection of rats against respiratory challenge with virulent Francisella tularensis.

De Pascalis R, Hahn A, Brook HM, Ryden P, Donart N, Mittereder L, Frey B, Wu TH, Elkins KL.

PLoS One. 2018 May 25;13(5):e0198140. doi: 10.1371/journal.pone.0198140. eCollection 2018.

3.

Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes.

Chou AY, Kennett NJ, Melillo AA, Elkins KL.

Microbes Infect. 2017 Feb;19(2):91-100. doi: 10.1016/j.micinf.2016.12.001. Epub 2016 Dec 10.

PMID:
27965147
4.

GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection.

Kurtz SL, Bosio CM, De Pascalis R, Elkins KL.

Microbes Infect. 2016 Dec;18(12):758-767. doi: 10.1016/j.micinf.2016.07.003. Epub 2016 Jul 27.

PMID:
27475899
5.

Progress, challenges, and opportunities in Francisella vaccine development.

Elkins KL, Kurtz SL, De Pascalis R.

Expert Rev Vaccines. 2016 Sep;15(9):1183-96. doi: 10.1586/14760584.2016.1170601. Epub 2016 May 3. Review.

PMID:
27010448
6.

Activities of Murine Peripheral Blood Lymphocytes Provide Immune Correlates That Predict Francisella tularensis Vaccine Efficacy.

De Pascalis R, Mittereder L, Kennett NJ, Elkins KL.

Infect Immun. 2016 Mar 24;84(4):1054-1061. doi: 10.1128/IAI.01348-15. Print 2016 Apr.

7.

Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations.

Kurtz SL, Elkins KL.

Clin Vaccine Immunol. 2015 Oct;22(10):1096-108. doi: 10.1128/CVI.00301-15. Epub 2015 Aug 12.

8.

Francisella tularensis Vaccines Elicit Concurrent Protective T- and B-Cell Immune Responses in BALB/cByJ Mice.

De Pascalis R, Mittereder L, Chou AY, Kennett NJ, Elkins KL.

PLoS One. 2015 May 14;10(5):e0126570. doi: 10.1371/journal.pone.0126570. eCollection 2015.

9.

IL-23 p19 knockout mice exhibit minimal defects in responses to primary and secondary infection with Francisella tularensis LVS.

Kurtz SL, Chou AY, Kubelkova K, Cua DJ, Elkins KL.

PLoS One. 2014 Oct 8;9(10):e109898. doi: 10.1371/journal.pone.0109898. eCollection 2014.

10.

Models derived from in vitro analyses of spleen, liver, and lung leukocyte functions predict vaccine efficacy against the Francisella tularensis Live Vaccine Strain (LVS).

De Pascalis R, Chou AY, Ryden P, Kennett NJ, Sjöstedt A, Elkins KL.

MBio. 2014 Apr 8;5(2):e00936. doi: 10.1128/mBio.00936-13.

11.

T-bet regulates immunity to Francisella tularensis live vaccine strain infection, particularly in lungs.

Melillo AA, Foreman O, Bosio CM, Elkins KL.

Infect Immun. 2014 Apr;82(4):1477-90. doi: 10.1128/IAI.01545-13. Epub 2014 Jan 13.

12.

Generation of protection against Francisella novicida in mice depends on the pathogenicity protein PdpA, but not PdpC or PdpD.

Chou AY, Kennett NJ, Nix EB, Schmerk CL, Nano FE, Elkins KL.

Microbes Infect. 2013 Nov;15(12):816-27. doi: 10.1016/j.micinf.2013.07.005. Epub 2013 Jul 20.

PMID:
23880085
13.

IL-12Rβ2 is critical for survival of primary Francisella tularensis LVS infection.

Melillo AA, Foreman O, Elkins KL.

J Leukoc Biol. 2013 May;93(5):657-67. doi: 10.1189/jlb.1012485. Epub 2013 Feb 25.

14.

Epicutaneous model of community-acquired Staphylococcus aureus skin infections.

Prabhakara R, Foreman O, De Pascalis R, Lee GM, Plaut RD, Kim SY, Stibitz S, Elkins KL, Merkel TJ.

Infect Immun. 2013 Apr;81(4):1306-15. doi: 10.1128/IAI.01304-12. Epub 2013 Feb 4.

15.

Interleukin-6 is essential for primary resistance to Francisella tularensis live vaccine strain infection.

Kurtz SL, Foreman O, Bosio CM, Anver MR, Elkins KL.

Infect Immun. 2013 Feb;81(2):585-97. doi: 10.1128/IAI.01249-12. Epub 2012 Dec 10.

16.

Development of functional and molecular correlates of vaccine-induced protection for a model intracellular pathogen, F. tularensis LVS.

De Pascalis R, Chou AY, Bosio CM, Huang CY, Follmann DA, Elkins KL.

PLoS Pathog. 2012 Jan;8(1):e1002494. doi: 10.1371/journal.ppat.1002494. Epub 2012 Jan 19.

17.

Immunity to Francisella.

Cowley SC, Elkins KL.

Front Microbiol. 2011 Feb 16;2:26. doi: 10.3389/fmicb.2011.00026. eCollection 2011.

18.

Infection of mice with Francisella as an immunological model.

Conlan JW, Chen W, Bosio CM, Cowley SC, Elkins KL.

Curr Protoc Immunol. 2011 Apr;Chapter 19:Unit 19.14. doi: 10.1002/0471142735.im1914s93.

19.

Measurement of macrophage-mediated killing of intracellular bacteria, including Francisella and mycobacteria.

Elkins KL, Cowley SC, Conlan JW.

Curr Protoc Immunol. 2011 Apr;Chapter 14:Unit14.25. doi: 10.1002/0471142735.im1425s93.

PMID:
21462167
20.

Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis.

Johansson A, Celli J, Conlan W, Elkins KL, Forsman M, Keim PS, Larsson P, Manoil C, Nano FE, Petersen JM, Sjöstedt A.

Int J Syst Evol Microbiol. 2010 Aug;60(Pt 8):1717-8; author reply 1718-20. doi: 10.1099/ijs.0.022830-0. No abstract available.

PMID:
20688748
21.

Lung CD4-CD8- double-negative T cells are prominent producers of IL-17A and IFN-gamma during primary respiratory murine infection with Francisella tularensis live vaccine strain.

Cowley SC, Meierovics AI, Frelinger JA, Iwakura Y, Elkins KL.

J Immunol. 2010 May 15;184(10):5791-801. doi: 10.4049/jimmunol.1000362. Epub 2010 Apr 14.

22.

Tumor progression locus 2 (Map3k8) is critical for host defense against Listeria monocytogenes and IL-1 beta production.

Mielke LA, Elkins KL, Wei L, Starr R, Tsichlis PN, O'Shea JJ, Watford WT.

J Immunol. 2009 Dec 15;183(12):7984-93. doi: 10.4049/jimmunol.0901336.

23.

Survival of secondary lethal systemic Francisella LVS challenge depends largely on interferon gamma.

Elkins KL, Colombini SM, Meierovics AI, Chu MC, Chou AY, Cowley SC.

Microbes Infect. 2010 Jan;12(1):28-36. doi: 10.1016/j.micinf.2009.09.012. Epub 2009 Sep 23.

PMID:
19781659
24.

Analysis of the Fc gamma receptor-dependent component of neutralization measured by anthrax toxin neutralization assays.

Verma A, Ngundi MM, Meade BD, De Pascalis R, Elkins KL, Burns DL.

Clin Vaccine Immunol. 2009 Oct;16(10):1405-12. doi: 10.1128/CVI.00194-09. Epub 2009 Aug 5.

25.

Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida.

Schmerk CL, Duplantis BN, Wang D, Burke RD, Chou AY, Elkins KL, Ludu JS, Nano FE.

Microbiology. 2009 May;155(Pt 5):1489-97. doi: 10.1099/mic.0.025379-0. Epub 2009 Apr 16.

26.

Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge.

Cole LE, Yang Y, Elkins KL, Fernandez ET, Qureshi N, Shlomchik MJ, Herzenberg LA, Herzenberg LA, Vogel SN.

Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4343-8. doi: 10.1073/pnas.0813411106. Epub 2009 Feb 26.

27.

T cells from lungs and livers of Francisella tularensis-immune mice control the growth of intracellular bacteria.

Collazo CM, Meierovics AI, De Pascalis R, Wu TH, Lyons CR, Elkins KL.

Infect Immun. 2009 May;77(5):2010-21. doi: 10.1128/IAI.01322-08. Epub 2009 Feb 23.

28.

NK cells activated in vivo by bacterial DNA control the intracellular growth of Francisella tularensis LVS.

Elkins KL, Colombini SM, Krieg AM, De Pascalis R.

Microbes Infect. 2009 Jan;11(1):49-56. doi: 10.1016/j.micinf.2008.10.005. Epub 2008 Oct 22.

PMID:
18992838
29.

The membrane form of tumor necrosis factor is sufficient to mediate partial innate immunity to Francisella tularensis live vaccine strain.

Cowley SC, Goldberg MF, Ho JA, Elkins KL.

J Infect Dis. 2008 Jul 15;198(2):284-92. doi: 10.1086/589620.

PMID:
18593295
30.

Diverse myeloid and lymphoid cell subpopulations produce gamma interferon during early innate immune responses to Francisella tularensis live vaccine strain.

De Pascalis R, Taylor BC, Elkins KL.

Infect Immun. 2008 Sep;76(9):4311-21. doi: 10.1128/IAI.00514-08. Epub 2008 Jun 23.

31.

The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system.

Ludu JS, de Bruin OM, Duplantis BN, Schmerk CL, Chou AY, Elkins KL, Nano FE.

J Bacteriol. 2008 Jul;190(13):4584-95. doi: 10.1128/JB.00198-08. Epub 2008 May 9.

32.

Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways.

Cole LE, Santiago A, Barry E, Kang TJ, Shirey KA, Roberts ZJ, Elkins KL, Cross AS, Vogel SN.

J Immunol. 2008 May 15;180(10):6885-91.

34.

Toll-like receptor 2-mediated signaling requirements for Francisella tularensis live vaccine strain infection of murine macrophages.

Cole LE, Shirey KA, Barry E, Santiago A, Rallabhandi P, Elkins KL, Puche AC, Michalek SM, Vogel SN.

Infect Immun. 2007 Aug;75(8):4127-37. Epub 2007 May 21.

35.

Innate and adaptive immunity to Francisella.

Elkins KL, Cowley SC, Bosio CM.

Ann N Y Acad Sci. 2007 Jun;1105:284-324. Epub 2007 Apr 27. Review.

PMID:
17468235
36.

Immunologic consequences of Francisella tularensis live vaccine strain infection: role of the innate immune response in infection and immunity.

Cole LE, Elkins KL, Michalek SM, Qureshi N, Eaton LJ, Rallabhandi P, Cuesta N, Vogel SN.

J Immunol. 2006 Jun 1;176(11):6888-99.

37.
38.

CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo.

Cowley SC, Hamilton E, Frelinger JA, Su J, Forman J, Elkins KL.

J Exp Med. 2005 Jul 18;202(2):309-19.

39.

A Francisella tularensis pathogenicity island required for intramacrophage growth.

Nano FE, Zhang N, Cowley SC, Klose KE, Cheung KK, Roberts MJ, Ludu JS, Letendre GW, Meierovics AI, Stephens G, Elkins KL.

J Bacteriol. 2004 Oct;186(19):6430-6.

40.

Francisella: a little bug hits the big time.

Elkins KL, Cowley SC, Collazo CM.

Expert Rev Vaccines. 2003 Dec;2(6):735-8. No abstract available.

PMID:
14711357
41.
43.
44.

Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain.

Elkins KL, Cowley SC, Bosio CM.

Microbes Infect. 2003 Feb;5(2):135-42. Review.

PMID:
12650771
46.

The CXC chemokine murine monokine induced by IFN-gamma (CXC chemokine ligand 9) is made by APCs, targets lymphocytes including activated B cells, and supports antibody responses to a bacterial pathogen in vivo.

Park MK, Amichay D, Love P, Wick E, Liao F, Grinberg A, Rabin RL, Zhang HH, Gebeyehu S, Wright TM, Iwasaki A, Weng Y, DeMartino JA, Elkins KL, Farber JM.

J Immunol. 2002 Aug 1;169(3):1433-43.

47.
48.

Supplemental Content

Loading ...
Support Center