Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

The IKs ion channel activator, mefenamic acid, requires KCNE1 and modulates channel gating in a subunit-dependent manner.

Wang Y, Eldstrom J, Fedida D.

Mol Pharmacol. 2019 Nov 13. pii: mol.119.117952. doi: 10.1124/mol.119.117952. [Epub ahead of print]

2.

I Ks ion-channel pore conductance can result from individual voltage sensor movements.

Westhoff M, Eldstrom J, Murray CI, Thompson E, Fedida D.

Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7879-7888. doi: 10.1073/pnas.1811623116. Epub 2019 Mar 27.

3.

The IKs Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry.

Thompson E, Eldstrom J, Westhoff M, McAfee D, Fedida D.

Biophys J. 2018 Nov 6;115(9):1731-1740. doi: 10.1016/j.bpj.2018.09.018. Epub 2018 Sep 27.

4.

Single channel kinetic analysis of the cAMP effect on IKs mutants, S209F and S27D/S92D.

Thompson E, Eldstrom J, Fedida D.

Channels (Austin). 2018;12(1):276-283. doi: 10.1080/19336950.2018.1499369.

PMID:
30027808
5.

Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening.

Hou P, Eldstrom J, Shi J, Zhong L, McFarland K, Gao Y, Fedida D, Cui J.

Nat Commun. 2017 Nov 23;8(1):1730. doi: 10.1038/s41467-017-01911-8.

6.

Photo-Cross-Linking of IKs Demonstrates State-Dependent Interactions between KCNE1 and KCNQ1.

Westhoff M, Murray CI, Eldstrom J, Fedida D.

Biophys J. 2017 Jul 25;113(2):415-425. doi: 10.1016/j.bpj.2017.06.005.

7.

cAMP-dependent regulation of IKs single-channel kinetics.

Thompson E, Eldstrom J, Westhoff M, McAfee D, Balse E, Fedida D.

J Gen Physiol. 2017 Aug 7;149(8):781-798. doi: 10.1085/jgp.201611734. Epub 2017 Jul 7.

8.

Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride.

Jalily PH, Eldstrom J, Miller SC, Kwan DC, Tai SS, Chou D, Niikura M, Tietjen I, Fedida D.

Mol Pharmacol. 2016 Aug;90(2):80-95. doi: 10.1124/mol.115.102731. Epub 2016 May 18.

PMID:
27193582
9.

AMP-activated protein kinase inhibits Kv 1.5 channel currents of pulmonary arterial myocytes in response to hypoxia and inhibition of mitochondrial oxidative phosphorylation.

Moral-Sanz J, Mahmoud AD, Ross FA, Eldstrom J, Fedida D, Hardie DG, Evans AM.

J Physiol. 2016 Sep 1;594(17):4901-15. doi: 10.1113/JP272032. Epub 2016 Jun 30.

10.

Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4.

Murray CI, Westhoff M, Eldstrom J, Thompson E, Emes R, Fedida D.

Elife. 2016 Jan 23;5. pii: e11815. doi: 10.7554/eLife.11815.

11.

Microscopic mechanisms for long QT syndrome type 1 revealed by single-channel analysis of I(Ks) with S3 domain mutations in KCNQ1.

Eldstrom J, Wang Z, Werry D, Wong N, Fedida D.

Heart Rhythm. 2015 Feb;12(2):386-94. doi: 10.1016/j.hrthm.2014.10.029. Epub 2014 Oct 29.

PMID:
25444851
12.

Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I(Ks).

Werry D, Eldstrom J, Wang Z, Fedida D.

Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E996-1005. doi: 10.1073/pnas.1214875110. Epub 2013 Feb 19.

13.

The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome.

Eldstrom J, Fedida D.

Expert Rev Mol Med. 2011 Dec 14;13:e38. doi: 10.1017/S1462399411002092. Review.

PMID:
22166675
14.

Functional characterization of the LQT2-causing mutation R582C and the associated voltage-dependent fluorescence signal.

Fougere RR, Es-Salah-Lamoureux Z, Rezazadeh S, Eldstrom J, Fedida D.

Heart Rhythm. 2011 Aug;8(8):1273-80. doi: 10.1016/j.hrthm.2011.02.035. Epub 2011 Mar 3.

PMID:
21376840
15.

A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation.

Horne AJ, Eldstrom J, Sanatani S, Fedida D.

Heart Rhythm. 2011 May;8(5):770-7. doi: 10.1016/j.hrthm.2010.12.041. Epub 2010 Dec 27.

PMID:
21193062
16.

Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of IKs.

Eldstrom J, Xu H, Werry D, Kang C, Loewen ME, Degenhardt A, Sanatani S, Tibbits GF, Sanders C, Fedida D.

J Gen Physiol. 2010 May;135(5):433-48. doi: 10.1085/jgp.200910351.

17.

Normal targeting of a tagged Kv1.5 channel acutely transfected into fresh adult cardiac myocytes by a biolistic method.

Dou Y, Balse E, Dehghani Zadeh A, Wang T, Goonasekara CL, Noble GP, Eldstrom J, Steele DF, Hatem SN, Fedida D.

Am J Physiol Cell Physiol. 2010 Jun;298(6):C1343-52. doi: 10.1152/ajpcell.00005.2010. Epub 2010 Mar 24.

18.

Modeling of high-affinity binding of the novel atrial anti-arrhythmic agent, vernakalant, to Kv1.5 channels.

Eldstrom J, Fedida D.

J Mol Graph Model. 2009 Oct;28(3):226-35. doi: 10.1016/j.jmgm.2009.07.005. Epub 2009 Aug 5.

PMID:
19713139
19.

Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes.

Balse E, El-Haou S, Dillanian G, Dauphin A, Eldstrom J, Fedida D, Coulombe A, Hatem SN.

Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14681-6. doi: 10.1073/pnas.0902809106. Epub 2009 Aug 17.

20.

Shared requirement for dynein function and intact microtubule cytoskeleton for normal surface expression of cardiac potassium channels.

Loewen ME, Wang Z, Eldstrom J, Dehghani Zadeh A, Khurana A, Steele DF, Fedida D.

Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H71-83. doi: 10.1152/ajpheart.00260.2008. Epub 2008 Oct 31.

21.

A KCNQ1 V205M missense mutation causes a high rate of long QT syndrome in a First Nations community of northern British Columbia: a community-based approach to understanding the impact.

Arbour L, Rezazadeh S, Eldstrom J, Weget-Simms G, Rupps R, Dyer Z, Tibbits G, Accili E, Casey B, Kmetic A, Sanatani S, Fedida D.

Genet Med. 2008 Jul;10(7):545-50. doi: 10.1097GIM.0b013e31817c6b19.

PMID:
18580685
22.

The molecular basis of high-affinity binding of the antiarrhythmic compound vernakalant (RSD1235) to Kv1.5 channels.

Eldstrom J, Wang Z, Xu H, Pourrier M, Ezrin A, Gibson K, Fedida D.

Mol Pharmacol. 2007 Dec;72(6):1522-34. Epub 2007 Sep 14.

PMID:
17872968
23.

Mechanisms of cardiac potassium channel trafficking.

Steele DF, Eldstrom J, Fedida D.

J Physiol. 2007 Jul 1;582(Pt 1):17-26. Epub 2007 Apr 5. Review.

24.

Localization of Kv1.5 channels in rat and canine myocyte sarcolemma.

Eldstrom J, Van Wagoner DR, Moore ED, Fedida D.

FEBS Lett. 2006 Nov 13;580(26):6039-46. Epub 2006 Oct 12.

25.

A specific N-terminal residue in Kv1.5 is required for upregulation of the channel by SAP97.

Mathur R, Choi WS, Eldstrom J, Wang Z, Kim J, Steele DF, Fedida D.

Biochem Biophys Res Commun. 2006 Mar 31;342(1):1-8. Epub 2006 Jan 31.

PMID:
16466689
26.

Separation of P/C- and U-type inactivation pathways in Kv1.5 potassium channels.

Kurata HT, Doerksen KW, Eldstrom JR, Rezazadeh S, Fedida D.

J Physiol. 2005 Oct 1;568(Pt 1):31-46. Epub 2005 Jul 14.

27.

Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles.

Brunet S, Aimond F, Li H, Guo W, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM.

J Physiol. 2004 Aug 15;559(Pt 1):103-20. Epub 2004 Jun 11. Erratum in: J Physiol. 2004 Sep 15;559(Pt 3):985.

28.

Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization.

Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D.

Am J Physiol Heart Circ Physiol. 2004 Feb;286(2):H749-59. Epub 2003 Oct 9.

29.

Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes.

Fedida D, Eldstrom J, Hesketh JC, Lamorgese M, Castel L, Steele DF, Van Wagoner DR.

Circ Res. 2003 Oct 17;93(8):744-51. Epub 2003 Sep 18.

PMID:
14500335
30.

SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism.

Eldstrom J, Choi WS, Steele DF, Fedida D.

FEBS Lett. 2003 Jul 17;547(1-3):205-11.

31.

N-terminal PDZ-binding domain in Kv1 potassium channels.

Eldstrom J, Doerksen KW, Steele DF, Fedida D.

FEBS Lett. 2002 Nov 20;531(3):529-37.

32.

Amino-terminal determinants of U-type inactivation of voltage-gated K+ channels.

Kurata HT, Soon GS, Eldstrom JR, Lu GW, Steele DF, Fedida D.

J Biol Chem. 2002 Aug 9;277(32):29045-53. Epub 2002 May 20.

33.

Lipopolysaccharide can activate BK channels of arterial smooth muscle in the absence of iNOS expression.

Yakubovich N, Eldstrom JR, Mathers DA.

Biochim Biophys Acta. 2001 Oct 1;1514(2):239-52.

34.

Polycationic lipids translocate lipopolysaccharide into HeLa cells.

Eldstrom JR, La K, Mathers DA.

Biotechniques. 2000 Mar;28(3):510, 512, 514, 516 passim.

Supplemental Content

Loading ...
Support Center