Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 111

1.

A step forward: Compatible and dual-inducible expression vectors for gene co-expression in Corynebacterium glutamicum.

Gauttam R, Desiderato C, Jung L, Shah A, Eikmanns BJ.

Plasmid. 2019 Jan;101:20-27. doi: 10.1016/j.plasmid.2018.12.004. Epub 2018 Dec 27.

PMID:
30594649
2.

One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst.

Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF.

Sci Rep. 2018 Aug 27;8(1):12895. doi: 10.1038/s41598-018-31309-5.

3.

The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.

Shah A, Blombach B, Gauttam R, Eikmanns BJ.

Appl Microbiol Biotechnol. 2018 Jul;102(14):5901-5910. doi: 10.1007/s00253-018-9085-3. Epub 2018 May 26. Review.

PMID:
29804137
4.

Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol.

Radoš D, Turner DL, Catarino T, Hoffart E, Neves AR, Eikmanns BJ, Blombach B, Santos H.

Appl Microbiol Biotechnol. 2016 Dec;100(24):10573-10583. Epub 2016 Sep 29.

PMID:
27687994
5.

Transcriptional Regulation of the β-Type Carbonic Anhydrase Gene bca by RamA in Corynebacterium glutamicum.

Shah A, Eikmanns BJ.

PLoS One. 2016 Apr 27;11(4):e0154382. doi: 10.1371/journal.pone.0154382. eCollection 2016.

6.

Engineering Corynebacterium glutamicum for the production of 2,3-butanediol.

Radoš D, Carvalho AL, Wieschalka S, Neves AR, Blombach B, Eikmanns BJ, Santos H.

Microb Cell Fact. 2015 Oct 29;14:171. doi: 10.1186/s12934-015-0362-x.

7.

C1-carbon sources for chemical and fuel production by microbial gas fermentation.

Dürre P, Eikmanns BJ.

Curr Opin Biotechnol. 2015 Dec;35:63-72. doi: 10.1016/j.copbio.2015.03.008. Epub 2015 Apr 2. Review.

PMID:
25841103
8.

The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose.

Clermont L, Macha A, Müller LM, Derya SM, von Zaluskowski P, Eck A, Eikmanns BJ, Seibold GM.

J Bacteriol. 2015 Apr;197(8):1394-407. doi: 10.1128/JB.02395-14. Epub 2015 Feb 9.

9.

Application of metabolic engineering for the biotechnological production of L-valine.

Oldiges M, Eikmanns BJ, Blombach B.

Appl Microbiol Biotechnol. 2014 Jul;98(13):5859-70. doi: 10.1007/s00253-014-5782-8. Epub 2014 May 11. Review.

PMID:
24816722
10.

Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.

Radoš D, Turner DL, Fonseca LL, Carvalho AL, Blombach B, Eikmanns BJ, Neves AR, Santos H.

Appl Environ Microbiol. 2014 May;80(10):3015-24. doi: 10.1128/AEM.04189-13. Epub 2014 Mar 7.

11.

The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering.

Eikmanns BJ, Blombach B.

J Biotechnol. 2014 Dec 20;192 Pt B:339-45. doi: 10.1016/j.jbiotec.2013.12.019. Epub 2014 Jan 29. Review.

PMID:
24486441
12.

Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.

Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ.

Appl Microbiol Biotechnol. 2014 Jan;98(1):297-311. doi: 10.1007/s00253-013-5310-2. Epub 2013 Oct 30.

PMID:
24169948
13.
14.

Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism.

Seibold GM, Eikmanns BJ.

Biosci Rep. 2013 Aug 23;33(4). pii: e00059. doi: 10.1042/BSR20130076.

15.

Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B.

Appl Environ Microbiol. 2013 Sep;79(18):5566-75. doi: 10.1128/AEM.01741-13. Epub 2013 Jul 8.

16.

Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.

Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM.

Appl Environ Microbiol. 2013 Apr;79(8):2588-95. doi: 10.1128/AEM.03231-12. Epub 2013 Feb 8.

17.

Bio-based production of organic acids with Corynebacterium glutamicum.

Wieschalka S, Blombach B, Bott M, Eikmanns BJ.

Microb Biotechnol. 2013 Mar;6(2):87-102. doi: 10.1111/1751-7915.12013. Epub 2012 Dec 2. Review.

18.

Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum.

Krause JP, Polen T, Youn JW, Emer D, Eikmanns BJ, Wendisch VF.

J Biotechnol. 2012 Jun 15;159(3):204-15. doi: 10.1016/j.jbiotec.2012.01.003. Epub 2012 Jan 12.

PMID:
22261175
19.

Engineering Corynebacterium glutamicum for the production of pyruvate.

Wieschalka S, Blombach B, Eikmanns BJ.

Appl Microbiol Biotechnol. 2012 Apr;94(2):449-59. doi: 10.1007/s00253-011-3843-9. Epub 2012 Jan 8.

PMID:
22228312
20.

Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.

Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ.

J Bacteriol. 2012 Mar;194(5):941-55. doi: 10.1128/JB.06064-11. Epub 2011 Dec 16.

21.

Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum.

Blombach B, Eikmanns BJ.

Bioeng Bugs. 2011 Nov-Dec;2(6):346-50. doi: 10.4161/bbug.2.6.17845. Epub 2011 Nov 1.

22.

The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum.

Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ.

Microbiology. 2011 Nov;157(Pt 11):3243-51. doi: 10.1099/mic.0.051565-0. Epub 2011 Sep 8.

PMID:
21903753
23.

Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S.

Appl Environ Microbiol. 2011 Sep;77(18):6644-52. doi: 10.1128/AEM.00575-11. Epub 2011 Jul 22.

24.

Corynebacterium glutamicum tailored for efficient isobutanol production.

Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ.

Appl Environ Microbiol. 2011 May;77(10):3300-10. doi: 10.1128/AEM.02972-10. Epub 2011 Mar 25.

25.

Rga is a regulator of adherence and pilus formation in Streptococcus agalactiae.

Samen U, Heinz B, Boisvert H, Eikmanns BJ, Reinscheid DJ, Borges F.

Microbiology. 2011 Aug;157(Pt 8):2319-27. doi: 10.1099/mic.0.044933-0. Epub 2011 Feb 17.

PMID:
21330442
26.

Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum.

Auchter M, Laslo T, Fleischer C, Schiller L, Arndt A, Gaigalat L, Kalinowski J, Eikmanns BJ.

J Biotechnol. 2011 Mar 20;152(3):77-86. doi: 10.1016/j.jbiotec.2011.02.003. Epub 2011 Feb 12.

PMID:
21320555
27.

Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.

Krause FS, Blombach B, Eikmanns BJ.

Appl Environ Microbiol. 2010 Dec;76(24):8053-61. doi: 10.1128/AEM.01710-10. Epub 2010 Oct 8.

28.

Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.

Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M.

Appl Environ Microbiol. 2010 Oct;76(20):6910-9. doi: 10.1128/AEM.01375-10. Epub 2010 Aug 27.

29.

Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR.

van Ooyen J, Emer D, Bussmann M, Bott M, Eikmanns BJ, Eggeling L.

J Biotechnol. 2011 Jul 10;154(2-3):140-8. doi: 10.1016/j.jbiotec.2010.07.004. Epub 2010 Jul 12.

PMID:
20630483
30.

RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.

Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ.

J Biotechnol. 2011 Jul 10;154(2-3):126-39. doi: 10.1016/j.jbiotec.2010.07.001. Epub 2010 Jul 8.

PMID:
20620178
31.

Genetic and functional analysis of the soluble oxaloacetate decarboxylase from Corynebacterium glutamicum.

Klaffl S, Eikmanns BJ.

J Bacteriol. 2010 May;192(10):2604-12. doi: 10.1128/JB.01678-09. Epub 2010 Mar 16.

32.

Selection of bifidobacteria based on adhesion and anti-inflammatory capacity in vitro for amelioration of murine colitis.

Preising J, Philippe D, Gleinser M, Wei H, Blum S, Eikmanns BJ, Niess JH, Riedel CU.

Appl Environ Microbiol. 2010 May;76(9):3048-51. doi: 10.1128/AEM.03127-09. Epub 2010 Mar 12.

33.

Studies on substrate utilisation in L-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex.

Bartek T, Rudolf C, Kerssen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M.

Bioprocess Biosyst Eng. 2010 Sep;33(7):873-83. doi: 10.1007/s00449-010-0410-1. Epub 2010 Mar 5.

PMID:
20204663
34.

The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum.

Seibold GM, Hagmann CT, Schietzel M, Emer D, Auchter M, Schreiner J, Eikmanns BJ.

Microbiology. 2010 Apr;156(Pt 4):1256-63. doi: 10.1099/mic.0.036756-0. Epub 2010 Jan 7.

PMID:
20056699
35.

Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.

Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M.

Biotechnol Prog. 2010 Mar-Apr;26(2):361-71. doi: 10.1002/btpr.345.

PMID:
20014412
36.

Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.

Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM.

Appl Environ Microbiol. 2010 Jan;76(1):370-4. doi: 10.1128/AEM.01553-09. Epub 2009 Oct 30.

37.

Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis.

Micklinghoff JC, Breitinger KJ, Schmidt M, Geffers R, Eikmanns BJ, Bange FC.

J Bacteriol. 2009 Dec;191(23):7260-9. doi: 10.1128/JB.01009-09. Epub 2009 Sep 18.

38.

Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA.

Bussmann M, Emer D, Hasenbein S, Degraf S, Eikmanns BJ, Bott M.

J Biotechnol. 2009 Sep 10;143(3):173-82. doi: 10.1016/j.jbiotec.2009.06.025. Epub 2009 Jul 5.

PMID:
19583988
39.

Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.

Seibold GM, Wurst M, Eikmanns BJ.

Microbiology. 2009 Feb;155(Pt 2):347-58. doi: 10.1099/mic.0.023614-0.

PMID:
19202084
40.

Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.

Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF.

J Biotechnol. 2009 Mar 10;140(1-2):75-83. doi: 10.1016/j.jbiotec.2008.12.014. Epub 2008 Dec 27.

PMID:
19162097
41.

Complex expression control of the Corynebacterium glutamicum aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA.

Emer D, Krug A, Eikmanns BJ, Bott M.

J Biotechnol. 2009 Mar 10;140(1-2):92-8. doi: 10.1016/j.jbiotec.2008.11.003. Epub 2008 Nov 27.

PMID:
19095019
42.

L-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR.

Blombach B, Arndt A, Auchter M, Eikmanns BJ.

Appl Environ Microbiol. 2009 Feb;75(4):1197-200. doi: 10.1128/AEM.02351-08. Epub 2008 Dec 16.

43.

Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.

Blombach B, Hans S, Bathe B, Eikmanns BJ.

Appl Environ Microbiol. 2009 Jan;75(2):419-27. doi: 10.1128/AEM.01844-08. Epub 2008 Dec 1.

44.

Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB.

Auchter M, Arndt A, Eikmanns BJ.

J Biotechnol. 2009 Mar 10;140(1-2):84-91. doi: 10.1016/j.jbiotec.2008.10.012. Epub 2008 Nov 12.

PMID:
19041911
45.

Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum.

Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K.

J Bacteriol. 2009 Feb;191(3):940-8. doi: 10.1128/JB.01155-08. Epub 2008 Nov 21.

46.

Corynebacterium glutamicum tailored for high-yield L-valine production.

Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ.

Appl Microbiol Biotechnol. 2008 Jun;79(3):471-9. doi: 10.1007/s00253-008-1444-z. Epub 2008 Apr 1.

PMID:
18379776
47.

Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR.

Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ, Tauch A.

FEMS Microbiol Lett. 2008 Apr;281(2):190-7. doi: 10.1111/j.1574-6968.2008.01098.x. Epub 2008 Mar 18.

48.

RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum.

Blombach B, Cramer A, Eikmanns BJ, Schreiner M.

J Mol Microbiol Biotechnol. 2009;16(3-4):236-9. Epub 2007 Sep 21.

PMID:
17890844
49.

The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells.

Samen U, Eikmanns BJ, Reinscheid DJ, Borges F.

Infect Immun. 2007 Nov;75(11):5405-14. Epub 2007 Aug 20.

50.

Ethanol catabolism in Corynebacterium glutamicum.

Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ.

J Mol Microbiol Biotechnol. 2008;15(4):222-33. Epub 2007 Aug 13.

PMID:
17693703

Supplemental Content

Loading ...
Support Center