Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 292

1.

Thermodynamic insights into the role of aromatic residues in chitooligosaccharide binding to the transglycosylating chitinase-D from Serratia proteamaculans.

Madhuprakash J, Rani TS, Podile AR, Eijsink VGH, Sørlie M.

Biochim Biophys Acta Proteins Proteom. 2020 Mar 26:140414. doi: 10.1016/j.bbapap.2020.140414. [Epub ahead of print] No abstract available.

PMID:
32224199
2.

Tailoring Hydrothermal Vent Biodiversity Toward Improved Biodiscovery Using a Novel in situ Enrichment Strategy.

Stokke R, Reeves EP, Dahle H, Fedøy AE, Viflot T, Lie Onstad S, Vulcano F, Pedersen RB, Eijsink VGH, Steen IH.

Front Microbiol. 2020 Feb 21;11:249. doi: 10.3389/fmicb.2020.00249. eCollection 2020.

3.

Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases.

Bissaro B, Kommedal E, Røhr ÅK, Eijsink VGH.

Nat Commun. 2020 Feb 14;11(1):890. doi: 10.1038/s41467-020-14744-9.

4.

Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products.

Lapeña D, Kosa G, Hansen LD, Mydland LT, Passoth V, Horn SJ, Eijsink VGH.

Microb Cell Fact. 2020 Feb 3;19(1):19. doi: 10.1186/s12934-020-1287-6.

5.

Molecular mechanism of the chitinolytic peroxygenase reaction.

Bissaro B, Streit B, Isaksen I, Eijsink VGH, Beckham GT, DuBois JL, Røhr ÅK.

Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1504-1513. doi: 10.1073/pnas.1904889117. Epub 2020 Jan 6.

PMID:
31907317
6.

Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts.

Ganan M, Lorentzen SB, Aam BB, Eijsink VGH, Gaustad P, Sørlie M.

PLoS One. 2019 Dec 31;14(12):e0227098. doi: 10.1371/journal.pone.0227098. eCollection 2019.

7.

Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass.

Lapeña D, Olsen PM, Arntzen MØ, Kosa G, Passoth V, Eijsink VGH, Horn SJ.

Bioprocess Biosyst Eng. 2020 Apr;43(4):723-736. doi: 10.1007/s00449-019-02271-x. Epub 2019 Dec 27.

8.

The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials.

Costa THF, Eijsink VGH, Horn SJ.

Biotechnol Biofuels. 2019 Nov 16;12:270. doi: 10.1186/s13068-019-1611-8. eCollection 2019.

9.

Can we make Chitosan by Enzymatic Deacetylation of Chitin?

Harmsen RAG, Tuveng TR, Antonsen SG, Eijsink VGH, Sørlie M.

Molecules. 2019 Oct 26;24(21). pii: E3862. doi: 10.3390/molecules24213862.

10.

Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.

Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvitvang HF, Nærdal GK, Sletta H, Forsberg Z, Eijsink VGH.

J Biol Chem. 2019 Dec 13;294(50):19349-19364. doi: 10.1074/jbc.RA119.010056. Epub 2019 Oct 27.

PMID:
31656228
11.

The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate.

Kont R, Pihlajaniemi V, Borisova AS, Aro N, Marjamaa K, Loogen J, Büchs J, Eijsink VGH, Kruus K, Väljamäe P.

Biotechnol Biofuels. 2019 Oct 8;12:235. doi: 10.1186/s13068-019-1578-5. eCollection 2019.

12.

Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization.

Hüttner S, Várnai A, Petrović DM, Bach CX, Kim Anh DT, Thanh VN, Eijsink VGH, Larsbrink J, Olsson L.

Appl Environ Microbiol. 2019 Nov 14;85(23). pii: e01408-19. doi: 10.1128/AEM.01408-19. Print 2019 Dec 1.

13.

Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase.

Kracher D, Forsberg Z, Bissaro B, Gangl S, Preims M, Sygmund C, Eijsink VGH, Ludwig R.

FEBS J. 2020 Mar;287(5):897-908. doi: 10.1111/febs.15067. Epub 2019 Oct 1.

14.

Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen.

Kuczkowska K, Øverland L, Rocha SDC, Eijsink VGH, Mathiesen G.

Vaccine. 2019 Oct 8;37(43):6371-6379. doi: 10.1016/j.vaccine.2019.09.012. Epub 2019 Sep 13.

15.

Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field.

Stepnov AA, Fredriksen L, Steen IH, Stokke R, Eijsink VGH.

PLoS One. 2019 Sep 6;14(9):e0222216. doi: 10.1371/journal.pone.0222216. eCollection 2019.

16.

Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation.

Petrović DM, Várnai A, Dimarogona M, Mathiesen G, Sandgren M, Westereng B, Eijsink VGH.

J Biol Chem. 2019 Oct 11;294(41):15068-15081. doi: 10.1074/jbc.RA119.008196. Epub 2019 Aug 20.

PMID:
31431506
17.

In-depth characterization of Trichoderma reesei cellobiohydrolase TrCel7A produced in Nicotiana benthamiana reveals limitations of cellulase production in plants by host-specific post-translational modifications.

van Eerde A, Várnai A, Jameson JK, Paruch L, Moen A, Anonsen JH, Chylenski P, Steen HS, Heldal I, Bock R, Eijsink VGH, Liu-Clarke J.

Plant Biotechnol J. 2020 Mar;18(3):631-643. doi: 10.1111/pbi.13227. Epub 2019 Aug 17.

18.

Inactivated Lactobacillus plantarum Carrying a Surface-Displayed Ag85B-ESAT-6 Fusion Antigen as a Booster Vaccine Against Mycobacterium tuberculosis Infection.

Kuczkowska K, Copland A, Øverland L, Mathiesen G, Tran AC, Paul MJ, Eijsink VGH, Reljic R.

Front Immunol. 2019 Jul 9;10:1588. doi: 10.3389/fimmu.2019.01588. eCollection 2019.

19.

Metaproteomics: Sample Preparation and Methodological Considerations.

Kunath BJ, Minniti G, Skaugen M, Hagen LH, Vaaje-Kolstad G, Eijsink VGH, Pope PB, Arntzen MØ.

Adv Exp Med Biol. 2019;1073:187-215. doi: 10.1007/978-3-030-12298-0_8. Review.

PMID:
31236844
20.

Polysaccharide degradation by lytic polysaccharide monooxygenases.

Forsberg Z, Sørlie M, Petrović D, Courtade G, Aachmann FL, Vaaje-Kolstad G, Bissaro B, Røhr ÅK, Eijsink VG.

Curr Opin Struct Biol. 2019 Dec;59:54-64. doi: 10.1016/j.sbi.2019.02.015. Epub 2019 Apr 1. Review.

21.

On the functional characterization of lytic polysaccharide monooxygenases (LPMOs).

Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G.

Biotechnol Biofuels. 2019 Mar 19;12:58. doi: 10.1186/s13068-019-1392-0. eCollection 2019. Review.

22.

Structural and Thermodynamic Signatures of Ligand Binding to the Enigmatic Chitinase D of Serratia proteamaculans.

Madhuprakash J, Dalhus B, Vaaje-Kolstad G, Sakuda S, Podile AR, Eijsink VGH, Sørlie M.

J Phys Chem B. 2019 Mar 14;123(10):2270-2279. doi: 10.1021/acs.jpcb.8b11448. Epub 2019 Mar 4.

PMID:
30789732
23.

Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge.

Vuoristo KS, Fredriksen L, Oftebro M, Arntzen MØ, Aarstad OA, Stokke R, Steen IH, Hansen LD, Schüller RB, Aachmann FL, Horn SJ, Eijsink VGH.

J Agric Food Chem. 2019 Mar 13;67(10):2936-2945. doi: 10.1021/acs.jafc.8b07190. Epub 2019 Feb 25.

PMID:
30781951
24.

Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity.

Hamre AG, Strømnes AS, Gustavsen D, Vaaje-Kolstad G, Eijsink VGH, Sørlie M.

Carbohydr Res. 2019 Feb 1;473:66-71. doi: 10.1016/j.carres.2019.01.001. Epub 2019 Jan 7.

25.

Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System.

Fredriksen L, Stokke R, Jensen MS, Westereng B, Jameson JK, Steen IH, Eijsink VGH.

Appl Environ Microbiol. 2019 Mar 6;85(6). pii: e02970-18. doi: 10.1128/AEM.02970-18. Print 2019 Mar 15.

26.

Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts.

Ganan M, Lorentzen SB, Agger JW, Heyward CA, Bakke O, Knutsen SH, Aam BB, Eijsink VGH, Gaustad P, Sørlie M.

PLoS One. 2019 Jan 8;14(1):e0210208. doi: 10.1371/journal.pone.0210208. eCollection 2019.

27.

Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis.

Takeda K, Umezawa K, Várnai A, Eijsink VG, Igarashi K, Yoshida M, Nakamura N.

Curr Opin Chem Biol. 2019 Apr;49:113-121. doi: 10.1016/j.cbpa.2018.12.001. Epub 2018 Dec 20. Review.

PMID:
30580186
28.

pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Gloeophyllum trabeum.

Hegnar OA, Petrovic DM, Bissaro B, Alfredsen G, Várnai A, Eijsink VGH.

Appl Environ Microbiol. 2019 Feb 20;85(5). pii: e02612-18. doi: 10.1128/AEM.02612-18. Print 2019 Mar 1.

29.

Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Kont R, Kuusk P, Heering A, Sørlie M, Bissaro B, Eijsink VGH, Väljamäe P.

J Biol Chem. 2019 Feb 1;294(5):1516-1528. doi: 10.1074/jbc.RA118.006196. Epub 2018 Dec 4.

30.

From proteins to polysaccharides: lifestyle and genetic evolution of Coprothermobacter proteolyticus.

Kunath BJ, Delogu F, Naas AE, Arntzen MØ, Eijsink VGH, Henrissat B, Hvidsten TR, Pope PB.

ISME J. 2019 Mar;13(3):603-617. doi: 10.1038/s41396-018-0290-y. Epub 2018 Oct 12.

31.

Proteomic Detection of Carbohydrate-Active Enzymes (CAZymes) in Microbial Secretomes.

Tuveng TR, Eijsink VGH, Arntzen MØ.

Methods Mol Biol. 2019;1871:159-177. doi: 10.1007/978-1-4939-8814-3_12.

PMID:
30276740
32.

Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass.

Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH.

Microbiol Mol Biol Rev. 2018 Sep 26;82(4). pii: e00029-18. doi: 10.1128/MMBR.00029-18. Print 2018 Dec. Review.

33.

Comparative Assessment of Enzymatic Hydrolysis for Valorization of Different Protein-Rich Industrial Byproducts.

Lapeña D, Vuoristo KS, Kosa G, Horn SJ, Eijsink VGH.

J Agric Food Chem. 2018 Sep 19;66(37):9738-9749. doi: 10.1021/acs.jafc.8b02444. Epub 2018 Sep 11.

PMID:
30142267
34.

Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila.

Kadowaki MAS, Várnai A, Jameson JK, T Leite AE, Costa-Filho AJ, Kumagai PS, Prade RA, Polikarpov I, Eijsink VGH.

PLoS One. 2018 Aug 20;13(8):e0202148. doi: 10.1371/journal.pone.0202148. eCollection 2018.

35.

Resonance assignments for the apo-form of the cellulose-active lytic polysaccharide monooxygenase TaLPMO9A.

Kitaoku Y, Courtade G, Petrović DM, Fukamizo T, Eijsink VGH, Aachmann FL.

Biomol NMR Assign. 2018 Oct;12(2):357-361. doi: 10.1007/s12104-018-9839-y. Epub 2018 Aug 16.

PMID:
30117034
36.

Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Väljamäe P.

J Biol Chem. 2018 Aug 3;293(31):12284. doi: 10.1074/jbc.AAC118.004796. No abstract available.

37.

The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.

Müller G, Chylenski P, Bissaro B, Eijsink VGH, Horn SJ.

Biotechnol Biofuels. 2018 Jul 24;11:209. doi: 10.1186/s13068-018-1199-4. eCollection 2018.

38.

Microbial Protein Produced from Brown Seaweed and Spruce Wood as a Feed Ingredient.

Sharma S, Hansen LD, Hansen JØ, Mydland LT, Horn SJ, Øverland M, Eijsink VGH, Vuoristo KS.

J Agric Food Chem. 2018 Aug 8;66(31):8328-8335. doi: 10.1021/acs.jafc.8b01835. Epub 2018 Jul 25.

PMID:
30004220
39.

Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus.

Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z.

FEBS Lett. 2018 Aug;592(15):2562-2571. doi: 10.1002/1873-3468.13189. Epub 2018 Jul 26.

40.

Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation.

Petrović DM, Bissaro B, Chylenski P, Skaugen M, Sørlie M, Jensen MS, Aachmann FL, Courtade G, Várnai A, Eijsink VGH.

Protein Sci. 2018 Sep;27(9):1636-1650. doi: 10.1002/pro.3451.

41.

The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.

Courtade G, Forsberg Z, Heggset EB, Eijsink VGH, Aachmann FL.

J Biol Chem. 2018 Aug 24;293(34):13006-13015. doi: 10.1074/jbc.RA118.004269. Epub 2018 Jul 2.

42.

Key Residues Affecting Transglycosylation Activity in Family 18 Chitinases: Insights into Donor and Acceptor Subsites.

Madhuprakash J, Dalhus B, Rani TS, Podile AR, Eijsink VGH, Sørlie M.

Biochemistry. 2018 Jul 24;57(29):4325-4337. doi: 10.1021/acs.biochem.8b00381. Epub 2018 Jul 11.

PMID:
29939724
43.

Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes.

Loose JSM, Arntzen MØ, Bissaro B, Ludwig R, Eijsink VGH, Vaaje-Kolstad G.

Biochemistry. 2018 Jul 17;57(28):4114-4124. doi: 10.1021/acs.biochem.8b00484. Epub 2018 Jun 29.

PMID:
29901989
44.

Analytical Tools for Characterizing Cellulose-Active Lytic Polysaccharide Monooxygenases (LPMOs).

Westereng B, Loose JSM, Vaaje-Kolstad G, Aachmann FL, Sørlie M, Eijsink VGH.

Methods Mol Biol. 2018;1796:219-246. doi: 10.1007/978-1-4939-7877-9_16.

PMID:
29856057
45.

Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome.

Jensen MS, Fredriksen L, MacKenzie AK, Pope PB, Leiros I, Chylenski P, Williamson AK, Christopeit T, Østby H, Vaaje-Kolstad G, Eijsink VGH.

PLoS One. 2018 May 24;13(5):e0197862. doi: 10.1371/journal.pone.0197862. eCollection 2018.

46.

The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.

Várnai A, Umezawa K, Yoshida M, Eijsink VGH.

Appl Environ Microbiol. 2018 May 17;84(11). pii: e00156-18. doi: 10.1128/AEM.00156-18. Print 2018 Jun 1.

47.

How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin.

Bissaro B, Isaksen I, Vaaje-Kolstad G, Eijsink VGH, Røhr ÅK.

Biochemistry. 2018 Mar 27;57(12):1893-1906. doi: 10.1021/acs.biochem.8b00138. Epub 2018 Mar 14.

PMID:
29498832
48.

"Candidatus Paraporphyromonas polyenzymogenes" encodes multi-modular cellulases linked to the type IX secretion system.

Naas AE, Solden LM, Norbeck AD, Brewer H, Hagen LH, Heggenes IM, McHardy AC, Mackie RI, Paša-Tolić L, Arntzen MØ, Eijsink VGH, Koropatkin NM, Hess M, Wrighton KC, Pope PB.

Microbiome. 2018 Mar 1;6(1):44. doi: 10.1186/s40168-018-0421-8.

49.

Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A).

Pechsrichuang P, Lorentzen SB, Aam BB, Tuveng TR, Hamre AG, Eijsink VGH, Yamabhai M.

Carbohydr Polym. 2018 Apr 15;186:420-428. doi: 10.1016/j.carbpol.2018.01.059.

PMID:
29456005
50.

Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions.

Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, Gardner JG.

J Biol Chem. 2018 Mar 9;293(10):3849-3859. doi: 10.1074/jbc.RA117.000849. Epub 2018 Jan 24.

Supplemental Content

Loading ...
Support Center