Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

Correction: Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3.

Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM; PLOS ONE Editors.

PLoS One. 2018 Aug 30;13(8):e0203548. doi: 10.1371/journal.pone.0203548. eCollection 2018.

2.

Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3.

Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM.

PLoS One. 2018 Feb 16;13(2):e0192452. doi: 10.1371/journal.pone.0192452. eCollection 2018. Erratum in: PLoS One. 2018 Aug 30;13(8):e0203548.

3.

Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens: a transcriptomic model.

Omony J, de Jong A, Krawczyk AO, Eijlander RT, Kuipers OP.

Microb Genom. 2018 Feb;4(2). doi: 10.1099/mgen.0.000157. Epub 2018 Feb 9.

4.

Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis.

Krawczyk AO, de Jong A, Omony J, Holsappel S, Wells-Bennik MHJ, Kuipers OP, Eijlander RT.

Appl Environ Microbiol. 2017 Mar 17;83(7). pii: e03122-16. doi: 10.1128/AEM.03122-16. Print 2017 Apr 1.

5.

SpoVT: From Fine-Tuning Regulator in Bacillus subtilis to Essential Sporulation Protein in Bacillus cereus.

Eijlander RT, Holsappel S, de Jong A, Ghosh A, Christie G, Kuipers OP.

Front Microbiol. 2016 Oct 13;7:1607. eCollection 2016.

6.

A transposon present in specific strains of Bacillus subtilis negatively affects nutrient- and dodecylamine-induced spore germination.

Krawczyk AO, Berendsen EM, de Jong A, Boekhorst J, Wells-Bennik MH, Kuipers OP, Eijlander RT.

Environ Microbiol. 2016 Dec;18(12):4830-4846. doi: 10.1111/1462-2920.13386. Epub 2016 Jun 27.

PMID:
27234229
7.

Genome Sequences of 12 Spore-Forming Bacillus Species, Comprising Bacillus coagulans, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Bacillus vallismortis, Isolated from Foods.

Krawczyk AO, de Jong A, Holsappel S, Eijlander RT, van Heel A, Berendsen EM, Wells-Bennik MH, Kuipers OP.

Genome Announc. 2016 May 12;4(3). pii: e00103-16. doi: 10.1128/genomeA.00103-16.

8.

Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus.

Berendsen EM, Wells-Bennik MH, Krawczyk AO, de Jong A, van Heel A, Holsappel S, Eijlander RT, Kuipers OP.

Genome Announc. 2016 May 5;4(3). pii: e00105-16. doi: 10.1128/genomeA.00105-16.

9.

Draft Genome Sequences of 10 Bacillus subtilis Strains That Form Spores with High or Low Heat Resistance.

Berendsen EM, Wells-Bennik MH, Krawczyk AO, de Jong A, van Heel A, Eijlander RT, Kuipers OP.

Genome Announc. 2016 Mar 17;4(2). pii: e00124-16. doi: 10.1128/genomeA.00124-16.

10.

Bacterial Spores in Food: Survival, Emergence, and Outgrowth.

Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T.

Annu Rev Food Sci Technol. 2016;7:457-82. doi: 10.1146/annurev-food-041715-033144. Review.

PMID:
26934174
11.

Next-Generation Whole-Genome Sequencing of Eight Strains of Bacillus cereus, Isolated from Food.

Krawczyk AO, de Jong A, Eijlander RT, Berendsen EM, Holsappel S, Wells-Bennik MH, Kuipers OP.

Genome Announc. 2015 Dec 17;3(6). pii: e01480-15. doi: 10.1128/genomeA.01480-15.

12.

Bacillus thermoamylovorans Spores with Very-High-Level Heat Resistance Germinate Poorly in Rich Medium despite the Presence of ger Clusters but Efficiently upon Exposure to Calcium-Dipicolinic Acid.

Berendsen EM, Krawczyk AO, Klaus V, de Jong A, Boekhorst J, Eijlander RT, Kuipers OP, Wells-Bennik MH.

Appl Environ Microbiol. 2015 Nov;81(22):7791-801. doi: 10.1128/AEM.01993-15. Epub 2015 Sep 4.

13.

Draft Genome Sequences of Four Bacillus thermoamylovorans Strains Isolated from Milk and Acacia Gum, a Food Ingredient.

Krawczyk AO, Berendsen EM, Eijlander RT, de Jong A, Wells-Bennik MH, Kuipers OP.

Genome Announc. 2015 Mar 26;3(2). pii: e00165-15. doi: 10.1128/genomeA.00165-15.

14.

Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production.

Mehne FM, Schröder-Tittmann K, Eijlander RT, Herzberg C, Hewitt L, Kaever V, Lewis RJ, Kuipers OP, Tittmann K, Stülke J.

J Biol Chem. 2014 Jul 25;289(30):21098-107. doi: 10.1074/jbc.M114.562066. Epub 2014 Jun 16.

15.

SporeWeb: an interactive journey through the complete sporulation cycle of Bacillus subtilis.

Eijlander RT, de Jong A, Krawczyk AO, Holsappel S, Kuipers OP.

Nucleic Acids Res. 2014 Jan;42(Database issue):D685-91. doi: 10.1093/nar/gkt1007. Epub 2013 Oct 28.

16.

Live-cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus.

Eijlander RT, Kuipers OP.

Appl Environ Microbiol. 2013 Sep;79(18):5643-51. doi: 10.1128/AEM.01347-13. Epub 2013 Jul 12.

17.

Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior.

Eijlander RT, Abee T, Kuipers OP.

Curr Opin Biotechnol. 2011 Apr;22(2):180-6. doi: 10.1016/j.copbio.2010.11.009. Epub 2010 Dec 4. Review.

PMID:
21134736
18.

Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis.

Eijlander RT, Kolbusz MA, Berendsen EM, Kuipers OP.

Microbiology. 2009 Jun;155(Pt 6):1776-85. doi: 10.1099/mic.0.027987-0. Epub 2009 Apr 21.

PMID:
19383693
19.

The twin-arginine translocation (Tat) systems from Bacillus subtilis display a conserved mode of complex organization and similar substrate recognition requirements.

Barnett JP, van der Ploeg R, Eijlander RT, Nenninger A, Mendel S, Rozeboom R, Kuipers OP, van Dijl JM, Robinson C.

FEBS J. 2009 Jan;276(1):232-43. doi: 10.1111/j.1742-4658.2008.06776.x. Epub 2008 Nov 25.

20.

Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion.

Eijlander RT, Jongbloed JD, Kuipers OP.

J Bacteriol. 2009 Jan;191(1):196-202. doi: 10.1128/JB.01264-08. Epub 2008 Oct 31.

21.

Transient heterogeneity in extracellular protease production by Bacillus subtilis.

Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP.

Mol Syst Biol. 2008;4:184. doi: 10.1038/msb.2008.18. Epub 2008 Apr 15.

22.

A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life.

Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T.

J Mol Biol. 2008 Jan 18;375(3):595-603. Epub 2007 Nov 12.

PMID:
18054046
23.

The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides.

Mendel S, McCarthy A, Barnett JP, Eijlander RT, Nenninger A, Kuipers OP, Robinson C.

J Mol Biol. 2008 Jan 18;375(3):661-72. Epub 2007 Oct 4.

PMID:
18036542
24.

A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes.

Barnett JP, Eijlander RT, Kuipers OP, Robinson C.

J Biol Chem. 2008 Feb 1;283(5):2534-42. Epub 2007 Nov 20.

Supplemental Content

Loading ...
Support Center