Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Burst Detection Methods.

Cotterill E, Eglen SJ.

Adv Neurobiol. 2019;22:185-206. doi: 10.1007/978-3-030-11135-9_8.

PMID:
31073937
2.

meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays.

Gelfman S, Wang Q, Lu YF, Hall D, Bostick CD, Dhindsa R, Halvorsen M, McSweeney KM, Cotterill E, Edinburgh T, Beaumont MA, Frankel WN, Petrovski S, Allen AS, Boland MJ, Goldstein DB, Eglen SJ.

PLoS Comput Biol. 2018 Oct 1;14(10):e1006506. doi: 10.1371/journal.pcbi.1006506. eCollection 2018 Oct.

3.

Toward standard practices for sharing computer code and programs in neuroscience.

Eglen SJ, Marwick B, Halchenko YO, Hanke M, Sufi S, Gleeson P, Silver RA, Davison AP, Lanyon L, Abrams M, Wachtler T, Willshaw DJ, Pouzat C, Poline JB.

Nat Neurosci. 2017 May 25;20(6):770-773. doi: 10.1038/nn.4550. No abstract available.

4.

A molecular mechanism for the topographic alignment of convergent neural maps.

Savier E, Eglen SJ, Bathélémy A, Perraut M, Pfrieger FW, Lemke G, Reber M.

Elife. 2017 Mar 14;6. pii: e20470. doi: 10.7554/eLife.20470.

5.

Ten Simple Rules for Taking Advantage of Git and GitHub.

Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, Leprevost Fda V, Fufezan C, Ternent T, Eglen SJ, Katz DS, Pollard TJ, Konovalov A, Flight RM, Blin K, Vizcaíno JA.

PLoS Comput Biol. 2016 Jul 14;12(7):e1004947. doi: 10.1371/journal.pcbi.1004947. eCollection 2016 Jul. No abstract available. Erratum in: PLoS Comput Biol. 2019 Jun 14;15(6):e1007142.

6.

A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks.

Cotterill E, Charlesworth P, Thomas CW, Paulsen O, Eglen SJ.

J Neurophysiol. 2016 Aug 1;116(2):306-21. doi: 10.1152/jn.00093.2016. Epub 2016 Apr 20.

7.

Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.

Gjorgjieva J, Evers JF, Eglen SJ.

J Neurosci. 2016 Mar 30;36(13):3722-34. doi: 10.1523/JNEUROSCI.2511-15.2016.

8.

Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates.

Cotterill E, Hall D, Wallace K, Mundy WR, Eglen SJ, Shafer TJ.

J Biomol Screen. 2016 Jun;21(5):510-9. doi: 10.1177/1087057116640520. Epub 2016 Mar 29.

9.

Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus.

Leiwe MN, Hendry AC, Bard AD, Eglen SJ, Lowe AS, Thompson ID.

PLoS One. 2016 Jan 4;11(1):e0144846. doi: 10.1371/journal.pone.0144846. eCollection 2016.

10.

Editorial: Quantitative Analysis of Neuroanatomy.

Budd JM, Cuntz H, Eglen SJ, Krieger P.

Front Neuroanat. 2015 Nov 11;9:143. doi: 10.3389/fnana.2015.00143. eCollection 2015. No abstract available.

11.

Estimating the location and size of retinal injections from orthogonal images of an intact retina.

Hjorth JJ, Savier E, Sterratt DC, Reber M, Eglen SJ.

BMC Neurosci. 2015 Nov 21;16:80. doi: 10.1186/s12868-015-0217-8.

12.

Canalization of genetic and pharmacological perturbations in developing primary neuronal activity patterns.

Charlesworth P, Morton A, Eglen SJ, Komiyama NH, Grant SG.

Neuropharmacology. 2016 Jan;100:47-55. doi: 10.1016/j.neuropharm.2015.07.027. Epub 2015 Jul 26.

13.

Quantitative differences in developmental profiles of spontaneous activity in cortical and hippocampal cultures.

Charlesworth P, Cotterill E, Morton A, Grant SG, Eglen SJ.

Neural Dev. 2015 Jan 28;10:1. doi: 10.1186/s13064-014-0028-0.

14.

Quantitative assessment of computational models for retinotopic map formation.

Hjorth JJ, Sterratt DC, Cutts CS, Willshaw DJ, Eglen SJ.

Dev Neurobiol. 2015 Jun;75(6):641-66. doi: 10.1002/dneu.22241. Epub 2014 Nov 14.

15.

Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves.

Cutts CS, Eglen SJ.

J Neurosci. 2014 Oct 22;34(43):14288-303. doi: 10.1523/JNEUROSCI.2767-14.2014.

16.

A data repository and analysis framework for spontaneous neural activity recordings in developing retina.

Eglen SJ, Weeks M, Jessop M, Simonotto J, Jackson T, Sernagor E.

Gigascience. 2014 Mar 26;3(1):3. doi: 10.1186/2047-217X-3-3.

17.

Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

Schottdorf M, Eglen SJ, Wolf F, Keil W.

PLoS One. 2014 Jan 24;9(1):e86139. doi: 10.1371/journal.pone.0086139. eCollection 2014.

18.

Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse.

Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E.

J Physiol. 2014 Apr 1;592(7):1545-63. doi: 10.1113/jphysiol.2013.262840. Epub 2013 Dec 23. Erratum in: J Physiol. 2014 Aug 15;592(Pt 16):3697.

19.

Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

Gjorgjieva J, Berni J, Evers JF, Eglen SJ.

Front Comput Neurosci. 2013 Apr 4;7:24. doi: 10.3389/fncom.2013.00024. eCollection 2013.

20.

Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex.

Hore VR, Troy JB, Eglen SJ.

Vis Neurosci. 2012 Nov;29(6):283-99. doi: 10.1017/S0952523812000338. Epub 2012 Oct 30. Review.

21.

GABAergic control of retinal ganglion cell dendritic development.

Chabrol FP, Eglen SJ, Sernagor E.

Neuroscience. 2012 Dec 27;227:30-43. doi: 10.1016/j.neuroscience.2012.09.040. Epub 2012 Sep 26.

PMID:
23022539
22.

Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas.

Keeley PW, Sliff BJ, Lee SC, Fuerst PG, Burgess RW, Eglen SJ, Reese BE.

J Comp Neurol. 2012 May 1;520(7):1349-64. doi: 10.1002/cne.23033.

23.

Modeling developmental patterns of spontaneous activity.

Gjorgjieva J, Eglen SJ.

Curr Opin Neurobiol. 2011 Oct;21(5):679-84. doi: 10.1016/j.conb.2011.05.015. Epub 2011 Jun 16. Review.

24.

Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.

Gjorgjieva J, Toyoizumi T, Eglen SJ.

PLoS Comput Biol. 2009 Dec;5(12):e1000618. doi: 10.1371/journal.pcbi.1000618. Epub 2009 Dec 24.

25.

A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth.

Godfrey KB, Eglen SJ, Swindale NV.

PLoS Comput Biol. 2009 Dec;5(12):e1000600. doi: 10.1371/journal.pcbi.1000600. Epub 2009 Dec 11.

26.

Theoretical models of spontaneous activity generation and propagation in the developing retina.

Godfrey KB, Eglen SJ.

Mol Biosyst. 2009 Dec;5(12):1527-35. doi: 10.1039/b907213f. Epub 2009 Sep 3. Review.

PMID:
19763323
27.

A quick guide to teaching R programming to computational biology students.

Eglen SJ.

PLoS Comput Biol. 2009 Aug;5(8):e1000482. doi: 10.1371/journal.pcbi.1000482. Epub 2009 Aug 28. No abstract available.

28.

Self-organization in the developing nervous system: theoretical models.

Eglen SJ, Gjorgjieva J.

HFSP J. 2009 Jun;3(3):176-85. doi: 10.2976/1.3079539. Epub 2009 Mar 23.

29.

Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning.

Eglen SJ, Lofgreen DD, Raven MA, Reese BE.

BMC Neurosci. 2008 Jul 21;9:68. doi: 10.1186/1471-2202-9-68.

30.

Spatial constraints underlying the retinal mosaics of two types of horizontal cells in cat and macaque.

Eglen SJ, Wong JC.

Vis Neurosci. 2008 Mar-Apr;25(2):209-14. doi: 10.1017/S0952523808080176. Epub 2008 Mar 11.

PMID:
18334045
31.

Development of regular cellular spacing in the retina: theoretical models.

Eglen SJ.

Math Med Biol. 2006 Jun;23(2):79-99. Epub 2006 Mar 1.

PMID:
16510463
32.

Homotypic constraints dominate positioning of on- and off-center beta retinal ganglion cells.

Eglen SJ, Diggle PJ, Troy JB.

Vis Neurosci. 2005 Nov-Dec;22(6):859-71.

34.

Mapping by waves. Patterned spontaneous activity regulates retinotopic map refinement.

Eglen SJ, Demas J, Wong RO.

Neuron. 2003 Dec 18;40(6):1053-5. Review.

35.

Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic.

Eglen SJ, Raven MA, Tamrazian E, Reese BE.

J Comp Neurol. 2003 Nov 17;466(3):343-55.

PMID:
14556292
36.

Developmental modulation of retinal wave dynamics: shedding light on the GABA saga.

Sernagor E, Young C, Eglen SJ.

J Neurosci. 2003 Aug 20;23(20):7621-9.

37.

Determinants of the exclusion zone in dopaminergic amacrine cell mosaics.

Raven MA, Eglen SJ, Ohab JJ, Reese BE.

J Comp Neurol. 2003 Jun 16;461(1):123-36.

PMID:
12722109
38.
39.
40.

Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study.

Eglen SJ, Willshaw DJ.

Development. 2002 Dec;129(23):5399-408.

41.

Development of retinal ganglion cell structure and function.

Sernagor E, Eglen SJ, Wong RO.

Prog Retin Eye Res. 2001 Mar;20(2):139-74. Review.

PMID:
11173250
42.

Lateral cell movement driven by dendritic interactions is sufficient to form retinal mosaics.

Eglen SJ, van Ooyen A, Willshaw DJ.

Network. 2000 Feb;11(1):103-18.

PMID:
10735531
43.
44.

The role of retinal waves and synaptic normalization in retinogeniculate development.

Eglen SJ.

Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1382):497-506.

Supplemental Content

Loading ...
Support Center