Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 38

1.

Microbial Danger Signals Control Transcriptional Induction of Distinct MHC Class I L Lineage Genes in Atlantic Salmon.

Svenning S, Gondek-Wyrozemska AT, van der Wal YA, Robertsen B, Jensen I, Jørgensen JB, Edholm ES.

Front Immunol. 2019 Oct 11;10:2425. doi: 10.3389/fimmu.2019.02425. eCollection 2019.

2.

Distinct Host-Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis.

Rhoo KH, Edholm ES, Forzán MJ, Khan A, Waddle AW, Pavelka MS Jr, Robert J.

J Immunol. 2019 Nov 15;203(10):2679-2688. doi: 10.4049/jimmunol.1900459. Epub 2019 Oct 7.

PMID:
31591148
3.

Impacts of the MHC class I-like XNC10 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus.

Banach M, Edholm ES, Gonzalez X, Benraiss A, Robert J.

Carcinogenesis. 2019 Jul 20;40(7):924-935. doi: 10.1093/carcin/bgz100.

PMID:
31155639
4.

Critical Role of an MHC Class I-Like/Innate-Like T Cell Immune Surveillance System in Host Defense against Ranavirus (Frog Virus 3) Infection.

Edholm EI, De Jesús Andino F, Yim J, Woo K, Robert J.

Viruses. 2019 Apr 6;11(4). pii: E330. doi: 10.3390/v11040330.

5.

Evaluating Blood Cell Populations in Xenopus Using Flow Cytometry and Differential Counts by Cytospin.

Robert J, Edholm ES, De Jesus Andino F.

Methods Mol Biol. 2018;1865:265-273. doi: 10.1007/978-1-4939-8784-9_19.

PMID:
30151773
6.

Flow Cytometric Analysis of Xenopus Immune Cells.

Edholm ES.

Cold Spring Harb Protoc. 2018 Jul 2;2018(7). doi: 10.1101/pdb.prot097600.

PMID:
29669848
7.

Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus.

Edholm ES, Banach M, Hyoe Rhoo K, Pavelka MS Jr, Robert J.

Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4023-E4031. doi: 10.1073/pnas.1722129115. Epub 2018 Apr 2.

8.

RNAi-Mediated Loss of Function of Xenopus Immune Genes by Transgenesis.

Edholm ES, Robert J.

Cold Spring Harb Protoc. 2018 Jul 2;2018(7). doi: 10.1101/pdb.prot101519.

PMID:
29382811
9.

Xenopus-FV3 host-pathogen interactions and immune evasion.

Jacques R, Edholm ES, Jazz S, Odalys TL, Francisco JA.

Virology. 2017 Nov;511:309-319. doi: 10.1016/j.virol.2017.06.005. Epub 2017 Jun 16.

10.

Evolutionary Aspects of Macrophages Polarization.

Edholm ES, Rhoo KH, Robert J.

Results Probl Cell Differ. 2017;62:3-22. doi: 10.1007/978-3-319-54090-0_1. Review.

11.

Evolution of innate-like T cells and their selection by MHC class I-like molecules.

Edholm ES, Banach M, Robert J.

Immunogenetics. 2016 Aug;68(8):525-36. doi: 10.1007/s00251-016-0929-7. Epub 2016 Jul 1. Review.

12.

Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system.

Banach M, Edholm ES, Robert J.

Dev Biol. 2017 Jun 15;426(2):261-269. doi: 10.1016/j.ydbio.2016.05.023. Epub 2016 Jun 16.

13.

Characterization of Frog Virus 3 knockout mutants lacking putative virulence genes.

Andino Fde J, Grayfer L, Chen G, Chinchar VG, Edholm ES, Robert J.

Virology. 2015 Nov;485:162-70. doi: 10.1016/j.virol.2015.07.011. Epub 2015 Aug 8.

14.

Nonclassical MHC-Restricted Invariant Vα6 T Cells Are Critical for Efficient Early Innate Antiviral Immunity in the Amphibian Xenopus laevis.

Edholm ES, Grayfer L, De Jesús Andino F, Robert J.

J Immunol. 2015 Jul 15;195(2):576-86. doi: 10.4049/jimmunol.1500458. Epub 2015 Jun 10.

15.

Semi-solid tumor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration.

Haynes-Gimore N, Banach M, Brown E, Dawes R, Edholm ES, Kim M, Robert J.

Dev Biol. 2015 Dec 15;408(2):205-12. doi: 10.1016/j.ydbio.2015.01.003. Epub 2015 Jan 17.

16.

Inflammation-induced reactivation of the ranavirus Frog Virus 3 in asymptomatic Xenopus laevis.

Robert J, Grayfer L, Edholm ES, Ward B, De Jesús Andino F.

PLoS One. 2014 Nov 12;9(11):e112904. doi: 10.1371/journal.pone.0112904. eCollection 2014.

17.

Identification and characterization of TCRγ and TCRδ chains in channel catfish, Ictalurus punctatus.

Moulana M, Taylor EB, Edholm ES, Quiniou SM, Wilson M, Bengtén E.

Immunogenetics. 2014 Oct;66(9-10):545-61. doi: 10.1007/s00251-014-0793-2. Epub 2014 Aug 17.

PMID:
25129471
18.

Evolution of nonclassical MHC-dependent invariant T cells.

Edholm ES, Grayfer L, Robert J.

Cell Mol Life Sci. 2014 Dec;71(24):4763-80. doi: 10.1007/s00018-014-1701-5. Epub 2014 Aug 14. Review.

19.

A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles.

Robert J, Edholm ES.

Immunogenetics. 2014 Oct;66(9-10):513-23. doi: 10.1007/s00251-014-0781-6. Epub 2014 Jun 5. Review.

PMID:
24898512
20.

A critical role of non-classical MHC in tumor immune evasion in the amphibian Xenopus model.

Haynes-Gilmore N, Banach M, Edholm ES, Lord E, Robert J.

Carcinogenesis. 2014 Aug;35(8):1807-13. doi: 10.1093/carcin/bgu100. Epub 2014 Apr 28.

21.

Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae.

Edholm ES, Goyos A, Taran J, De Jesús Andino F, Ohta Y, Robert J.

Immunogenetics. 2014 Jun;66(6):411-26. doi: 10.1007/s00251-014-0774-5. Epub 2014 Apr 27.

22.

Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor.

Grayfer L, Edholm ES, Robert J.

Int J Dev Biol. 2014;58(10-12):757-66. doi: 10.1387/ijdb.140271jr.

23.

Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians.

Edholm ES, Albertorio Saez LM, Gill AL, Gill SR, Grayfer L, Haynes N, Myers JR, Robert J.

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14342-7. doi: 10.1073/pnas.1309840110. Epub 2013 Aug 12.

24.

Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis.

Nedelkovska H, Edholm ES, Haynes N, Robert J.

Biol Open. 2013 Mar 15;2(3):335-42. doi: 10.1242/bio.20133483. Epub 2013 Jan 29.

25.

CD4+ T-helper cells stimulated in response to placental ischemia mediate hypertension during pregnancy.

Wallace K, Richards S, Dhillon P, Weimer A, Edholm ES, Bengten E, Wilson M, Martin JN Jr, LaMarca B.

Hypertension. 2011 May;57(5):949-55. doi: 10.1161/HYPERTENSIONAHA.110.168344. Epub 2011 Apr 4.

26.

Insights into the function of IgD.

Edholm ES, Bengten E, Wilson M.

Dev Comp Immunol. 2011 Dec;35(12):1309-16. doi: 10.1016/j.dci.2011.03.002. Epub 2011 Mar 22. Review.

PMID:
21414345
27.

Channel catfish CD8α and CD8β co-receptors: characterization, expression and polymorphism.

Quiniou SM, Sahoo M, Edholm ES, Bengten E, Wilson M.

Fish Shellfish Immunol. 2011 Mar;30(3):894-901. doi: 10.1016/j.fsi.2011.01.011. Epub 2011 Jan 25.

PMID:
21272650
28.

Immunoglobulin light (IgL) chains in ectothermic vertebrates.

Edholm ES, Wilson M, Bengten E.

Dev Comp Immunol. 2011 Sep;35(9):906-15. doi: 10.1016/j.dci.2011.01.012. Epub 2011 Jan 21. Review.

PMID:
21256861
29.

Identification of two IgD+ B cell populations in channel catfish, Ictalurus punctatus.

Edholm ES, Bengtén E, Stafford JL, Sahoo M, Taylor EB, Miller NW, Wilson M.

J Immunol. 2010 Oct 1;185(7):4082-94. doi: 10.4049/jimmunol.1000631. Epub 2010 Sep 3.

30.

Characterization of anti-channel catfish IgL sigma monoclonal antibodies.

Edholm ES, Hudgens ED, Tompkins D, Sahoo M, Burkhalter B, Miller NW, Bengtén E, Wilson M.

Vet Immunol Immunopathol. 2010 Jun 15;135(3-4):325-8. doi: 10.1016/j.vetimm.2010.01.004. Epub 2010 Jan 25.

PMID:
20149930
31.

Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils.

Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, Edholm ES, Santini PA, Rath P, Chiu A, Cattalini M, Litzman J, B Bussel J, Huang B, Meini A, Riesbeck K, Cunningham-Rundles C, Plebani A, Cerutti A.

Nat Immunol. 2009 Aug;10(8):889-98. doi: 10.1038/ni.1748. Epub 2009 Jun 28.

32.

Identification of Igsigma and Iglambda in channel catfish, Ictalurus punctatus, and Iglambda in Atlantic cod, Gadus morhua.

Edholm ES, Wilson M, Sahoo M, Miller NW, Pilström L, Wermenstam NE, Bengtén E.

Immunogenetics. 2009 May;61(5):353-70. doi: 10.1007/s00251-009-0365-z. Epub 2009 Mar 31.

PMID:
19333591
33.

B cell receptor accessory molecules in the channel catfish, Ictalurus punctatus.

Sahoo M, Edholm ES, Stafford JL, Bengtén E, Miller NW, Wilson M.

Dev Comp Immunol. 2008;32(11):1385-97. doi: 10.1016/j.dci.2008.05.008. Epub 2008 Jun 10.

34.

The two channel catfish intelectin genes exhibit highly differential patterns of tissue expression and regulation after infection with Edwardsiella ictaluri.

Takano T, Sha Z, Peatman E, Terhune J, Liu H, Kucuktas H, Li P, Edholm ES, Wilson M, Liu Z.

Dev Comp Immunol. 2008;32(6):693-705. Epub 2007 Nov 26.

PMID:
18078992
35.

Channel catfish, Ictalurus punctatus, CD4-like molecules.

Edholm ES, Stafford JL, Quiniou SM, Waldbieser G, Miller NW, Bengtén E, Wilson M.

Dev Comp Immunol. 2007;31(2):172-87. Epub 2006 Jun 30.

PMID:
16844219
36.

The effect of sodium intake on cystinuria with and without tiopronin treatment.

Lindell A, Denneberg T, Edholm E, Jeppsson JO.

Nephron. 1995;71(4):407-15.

PMID:
8587620
37.

[Nutritional support to patients with nutritional problems--to what price?].

Tibbling L, Lundgren J, Edholm E, Wersäll J.

Lakartidningen. 1991 Jan 23;88(4):209-10. Swedish. No abstract available.

PMID:
1994158
38.

[Computer tomography--modern visualization of the internal].

Edholm E.

Lakartidningen. 1979 Oct 24;76(43):3743-6. Swedish. No abstract available.

PMID:
529918

Supplemental Content

Loading ...
Support Center