Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

AP-1cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration.

Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K.

Commun Biol. 2019 Mar 6;2:91. doi: 10.1038/s42003-019-0335-4. eCollection 2019.

2.

Regeneration: From cells to tissues to organisms.

Echeverri K, Zayas RM.

Dev Biol. 2018 Jan 15;433(2):109-110. doi: 10.1016/j.ydbio.2017.12.005. No abstract available.

3.

Learning from regeneration research organisms: The circuitous road to scar free wound healing.

Erickson JR, Echeverri K.

Dev Biol. 2018 Jan 15;433(2):144-154. doi: 10.1016/j.ydbio.2017.09.025. Epub 2017 Nov 24. Review.

4.

Development of a 3D matrix for modeling mammalian spinal cord injury in vitro.

Diaz Quiroz JF, Li Y, Aparicio C, Echeverri K.

Neural Regen Res. 2016 Nov;11(11):1810-1815. doi: 10.4103/1673-5374.194751.

5.

Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M.

Regeneration (Oxf). 2015 Nov 26;3(1):3-25. doi: 10.1002/reg2.48. eCollection 2016 Feb.

6.

A novel role for SALL4 during scar-free wound healing in axolotl.

Erickson JR, Gearhart MD, Honson DD, Reid TA, Gardner MK, Moriarity BS, Echeverri K.

NPJ Regen Med. 2016;1. pii: 16016. doi: 10.1038/npjregenmed.2016.16. Epub 2016 Dec 8.

7.

Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.

Sabin K, Santos-Ferreira T, Essig J, Rudasill S, Echeverri K.

Dev Biol. 2015 Dec 1;408(1):14-25. doi: 10.1016/j.ydbio.2015.10.012. Epub 2015 Oct 20.

8.

Identification of Conserved and Novel MicroRNAs during Tail Regeneration in the Mexican Axolotl.

Gearhart MD, Erickson JR, Walsh A, Echeverri K.

Int J Mol Sci. 2015 Sep 11;16(9):22046-61. doi: 10.3390/ijms160922046.

9.

In vivo modulation and quantification of microRNAs during axolotl tail regeneration.

Erickson JR, Echeverri K.

Methods Mol Biol. 2015;1290:159-67. doi: 10.1007/978-1-4939-2495-0_13.

10.

Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat.

Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K.

Dis Model Mech. 2014 Jun;7(6):601-11. doi: 10.1242/dmm.014837. Epub 2014 Apr 3.

11.

Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow?

Diaz Quiroz JF, Echeverri K.

Biochem J. 2013 May 1;451(3):353-64. doi: 10.1042/BJ20121807. Review.

PMID:
23581406
12.

miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events.

Sehm T, Sachse C, Frenzel C, Echeverri K.

Dev Biol. 2009 Oct 15;334(2):468-80. doi: 10.1016/j.ydbio.2009.08.008. Epub 2009 Aug 13.

13.
14.

Proximodistal patterning during limb regeneration.

Echeverri K, Tanaka EM.

Dev Biol. 2005 Mar 15;279(2):391-401.

15.

Electroporation as a tool to study in vivo spinal cord regeneration.

Echeverri K, Tanaka EM.

Dev Dyn. 2003 Feb;226(2):418-25.

16.

Ectoderm to mesoderm lineage switching during axolotl tail regeneration.

Echeverri K, Tanaka EM.

Science. 2002 Dec 6;298(5600):1993-6.

17.

Mechanisms of muscle dedifferentiation during regeneration.

Echeverri K, Tanaka EM.

Semin Cell Dev Biol. 2002 Oct;13(5):353-60. Review.

PMID:
12324217
18.

Supplemental Content

Loading ...
Support Center