Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice.

Huang R, Li Z, Mao C, Zhang H, Sun Z, Li H, Huang C, Feng Y, Shen X, Bucher M, Zhang Z, Lin Y, Cao Y, Duanmu D.

New Phytol. 2019 Sep 4. doi: 10.1111/nph.16158. [Epub ahead of print]

PMID:
31484206
2.

CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation.

Wang L, Rubio MC, Xin X, Zhang B, Fan Q, Wang Q, Ning G, Becana M, Duanmu D.

New Phytol. 2019 Jul 29. doi: 10.1111/nph.16077. [Epub ahead of print]

PMID:
31355948
3.

Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9.

Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q.

Int J Mol Sci. 2019 May 19;20(10). pii: E2471. doi: 10.3390/ijms20102471.

4.

Overexpression of particular MADS-box transcription factors in heat-stressed plants induces chloroplast biogenesis in petals.

Wang Z, Shen Y, Yang X, Pan Q, Ma G, Bao M, Zheng B, Duanmu D, Lin R, Larkin RM, Ning G.

Plant Cell Environ. 2019 May;42(5):1545-1560. doi: 10.1111/pce.13472. Epub 2018 Nov 19.

PMID:
30375658
5.

A Dihydroflavonol-4-Reductase-Like Protein Interacts with NFR5 and Regulates Rhizobial Infection in Lotus japonicus.

Duan L, Pei J, Ren Y, Li H, Zhou X, Zhu H, Duanmu D, Wen J, Mysore KS, Cao Y, Zhang Z.

Mol Plant Microbe Interact. 2019 Apr;32(4):401-412. doi: 10.1094/MPMI-04-18-0104-R. Epub 2019 Feb 25.

PMID:
30295579
6.

Suppression of innate immunity mediated by the CDPK-Rboh complex is required for rhizobial colonization in Medicago truncatula nodules.

Yu H, Xiao A, Dong R, Fan Y, Zhang X, Liu C, Wang C, Zhu H, Duanmu D, Cao Y, Zhang Z.

New Phytol. 2018 Oct;220(2):425-434. doi: 10.1111/nph.15410. Epub 2018 Aug 21.

PMID:
30129677
7.

A C3HC4-type RING finger protein regulates rhizobial infection and nodule organogenesis in Lotus japonicus.

Cai K, Yin J, Chao H, Ren Y, Jin L, Cao Y, Duanmu D, Zhang Z.

J Integr Plant Biol. 2018 Sep;60(9):878-896. doi: 10.1111/jipb.12703.

PMID:
30047576
8.
9.

Bilin-Dependent Photoacclimation in Chlamydomonas reinhardtii.

Wittkopp TM, Schmollinger S, Saroussi S, Hu W, Zhang W, Fan Q, Gallaher SD, Leonard MT, Soubeyrand E, Basset GJ, Merchant SS, Grossman AR, Duanmu D, Lagarias JC.

Plant Cell. 2017 Nov;29(11):2711-2726. doi: 10.1105/tpc.17.00149. Epub 2017 Oct 30.

10.

Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes.

Wang L, Wang L, Zhou Y, Duanmu D.

Prog Mol Biol Transl Sci. 2017;149:187-213. doi: 10.1016/bs.pmbts.2017.03.010. Epub 2017 May 3. Review.

PMID:
28712497
11.

Algal light sensing and photoacclimation in aquatic environments.

Duanmu D, Rockwell NC, Lagarias JC.

Plant Cell Environ. 2017 Nov;40(11):2558-2570. doi: 10.1111/pce.12943. Epub 2017 May 11. Review.

12.

Efficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9.

Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D.

Front Plant Sci. 2016 Aug 31;7:1333. doi: 10.3389/fpls.2016.01333. eCollection 2016.

13.

NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula.

Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z.

New Phytol. 2016 Oct;212(1):176-91. doi: 10.1111/nph.14017. Epub 2016 Jun 1.

14.

Marine algae and land plants share conserved phytochrome signaling systems.

Duanmu D, Bachy C, Sudek S, Wong CH, Jiménez V, Rockwell NC, Martin SS, Ngan CY, Reistetter EN, van Baren MJ, Price DC, Wei CL, Reyes-Prieto A, Lagarias JC, Worden AZ.

Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15827-32. doi: 10.1073/pnas.1416751111. Epub 2014 Sep 29.

15.

Eukaryotic algal phytochromes span the visible spectrum.

Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC, Bhattacharya D, Worden AZ, Lagarias JC.

Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3871-6. doi: 10.1073/pnas.1401871111. Epub 2014 Feb 24. Erratum in: Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E1051.

16.

Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival.

Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC.

Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3621-6. doi: 10.1073/pnas.1222375110. Epub 2013 Jan 23.

17.

Insertional suppressors of Chlamydomonas reinhardtii that restore growth of air-dier lcib mutants in low CO2.

Duanmu D, Spalding MH.

Photosynth Res. 2011 Sep;109(1-3):123-32. doi: 10.1007/s11120-011-9642-4. Epub 2011 Mar 16.

PMID:
21409559
18.

Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture.

Wang Y, Duanmu D, Spalding MH.

Photosynth Res. 2011 Sep;109(1-3):115-22. doi: 10.1007/s11120-011-9643-3. Epub 2011 Mar 16. Review.

PMID:
21409558
19.

Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii.

Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH.

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5990-5. doi: 10.1073/pnas.0812885106. Epub 2009 Mar 24.

20.

Thylakoid lumen carbonic anhydrase (CAH3) mutation suppresses air-Dier phenotype of LCIB mutant in Chlamydomonas reinhardtii.

Duanmu D, Wang Y, Spalding MH.

Plant Physiol. 2009 Feb;149(2):929-37. doi: 10.1104/pp.108.132456. Epub 2008 Dec 12.

Supplemental Content

Loading ...
Support Center