Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress.

Badia MB, Maurino VG, Pavlovic T, Arias CL, Pagani MA, Andreo CS, Saigo M, Drincovich MF, Gerrard Wheeler MC.

Plant J. 2019 Oct 18. doi: 10.1111/tpj.14571. [Epub ahead of print]

PMID:
31626366
2.

Posttranslational Modification of the NADP-Malic Enzyme Involved in C4 Photosynthesis Modulates the Enzymatic Activity during the Day.

Bovdilova A, Alexandre BM, Höppner A, Luís IM, Alvarez CE, Bickel D, Gohlke H, Decker C, Nagel-Steger L, Alseekh S, Fernie AR, Drincovich MF, Abreu IA, Maurino VG.

Plant Cell. 2019 Oct;31(10):2525-2539. doi: 10.1105/tpc.19.00406. Epub 2019 Jul 30.

PMID:
31363039
3.

Molecular adaptations of NADP-malic enzyme for its function in C4 photosynthesis in grasses.

Alvarez CE, Bovdilova A, Höppner A, Wolff CC, Saigo M, Trajtenberg F, Zhang T, Buschiazzo A, Nagel-Steger L, Drincovich MF, Lercher MJ, Maurino VG.

Nat Plants. 2019 Jul;5(7):755-765. doi: 10.1038/s41477-019-0451-7. Epub 2019 Jun 24.

PMID:
31235877
4.

Peach Fruit Development: A Comparative Proteomic Study Between Endocarp and Mesocarp at Very Early Stages Underpins the Main Differential Biochemical Processes Between These Tissues.

Rodriguez CE, Bustamante CA, Budde CO, Müller GL, Drincovich MF, Lara MV.

Front Plant Sci. 2019 Jun 4;10:715. doi: 10.3389/fpls.2019.00715. eCollection 2019.

5.

NADP-Dependent Malic Enzyme 1 Participates in the Abscisic Acid Response in Arabidopsis thaliana.

Arias CL, Pavlovic T, Torcolese G, Badia MB, Gismondi M, Maurino VG, Andreo CS, Drincovich MF, Gerrard Wheeler MC, Saigo M.

Front Plant Sci. 2018 Nov 6;9:1637. doi: 10.3389/fpls.2018.01637. eCollection 2018.

6.

Chimeric Structure of Plant Malic Enzyme Family: Different Evolutionary Scenarios for NAD- and NADP-Dependent Isoforms.

Tronconi MA, Andreo CS, Drincovich MF.

Front Plant Sci. 2018 May 11;9:565. doi: 10.3389/fpls.2018.00565. eCollection 2018.

7.

The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate.

Zubimendi JP, Martinatto A, Valacco MP, Moreno S, Andreo CS, Drincovich MF, Tronconi MA.

FEBS J. 2018 Jun;285(12):2205-2224. doi: 10.1111/febs.14483. Epub 2018 May 13.

8.

The crystal structure of the malic enzyme from Candidatus Phytoplasma reveals the minimal structural determinants for a malic enzyme.

Alvarez CE, Trajtenberg F, Larrieux N, Saigo M, Golic A, Andreo CS, Hogenhout SA, Mussi MA, Drincovich MF, Buschiazzo A.

Acta Crystallogr D Struct Biol. 2018 Apr 1;74(Pt 4):332-340. doi: 10.1107/S2059798318002759. Epub 2018 Apr 6.

PMID:
29652260
9.

Improved water use efficiency and shorter life cycle of Nicotiana tabacum due to modification of guard and vascular companion cells.

Müller GL, Lara MV, Oitaven P, Andreo CS, Maurino VG, Drincovich MF.

Sci Rep. 2018 Mar 12;8(1):4380. doi: 10.1038/s41598-018-22431-5.

10.

Differential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury.

Bustamante CA, Brotman Y, Monti LL, Gabilondo J, Budde CO, Lara MV, Fernie AR, Drincovich MF.

Physiol Plant. 2018 May;163(1):2-17. doi: 10.1111/ppl.12665. Epub 2017 Dec 5.

PMID:
29094760
11.

Comparative proteomic and metabolomic studies between Prunus persica genotypes resistant and susceptible to Taphrina deformans suggest a molecular basis of resistance.

Goldy C, Svetaz LA, Bustamante CA, Allegrini M, Valentini GH, Drincovich MF, Fernie AR, Lara MV.

Plant Physiol Biochem. 2017 Sep;118:245-255. doi: 10.1016/j.plaphy.2017.06.022. Epub 2017 Jun 17.

PMID:
28651230
12.

Unravelling early events in the Taphrina deformans-Prunus persica interaction: an insight into the differential responses in resistant and susceptible genotypes.

Svetaz LA, Bustamante CA, Goldy C, Rivero N, Müller GL, Valentini GH, Fernie AR, Drincovich MF, Lara MV.

Plant Cell Environ. 2017 Aug;40(8):1456-1473. doi: 10.1111/pce.12942. Epub 2017 Apr 27.

PMID:
28244594
13.

Specific Arabidopsis thaliana malic enzyme isoforms can provide anaplerotic pyruvate carboxylation function in Saccharomyces cerevisiae.

Badia MB, Mans R, Lis AV, Tronconi MA, Arias CL, Maurino VG, Andreo CS, Drincovich MF, van Maris AJ, Gerrard Wheeler MC.

FEBS J. 2017 Feb;284(4):654-665. doi: 10.1111/febs.14013. Epub 2017 Feb 1.

14.

Editorial: On the Diversity of Roles of Organic Acids.

Drincovich MF, Voll LM, Maurino VG.

Front Plant Sci. 2016 Oct 25;7:1592. eCollection 2016. No abstract available.

15.

Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits.

Bustamante CA, Monti LL, Gabilondo J, Scossa F, Valentini G, Budde CO, Lara MV, Fernie AR, Drincovich MF.

Front Plant Sci. 2016 Sep 30;7:1478. eCollection 2016.

16.

Differential Contribution of Malic Enzymes during Soybean and Castor Seeds Maturation.

Gerrard Wheeler MC, Arias CL, Righini S, Badia MB, Andreo CS, Drincovich MF, Saigo M.

PLoS One. 2016 Jun 27;11(6):e0158040. doi: 10.1371/journal.pone.0158040. eCollection 2016.

17.

Cell wall-related genes studies on peach cultivars with differential susceptibility to woolliness: looking for candidates as indicators of chilling tolerance.

Genero M, Gismondi M, Monti LL, Gabilondo J, Budde CO, Andreo CS, Lara MV, Drincovich MF, Bustamante CA.

Plant Cell Rep. 2016 Jun;35(6):1235-46. doi: 10.1007/s00299-016-1956-4. Epub 2016 Feb 23.

PMID:
26905727
18.

Enhanced cytosolic NADP-ME2 activity in A. thaliana affects plant development, stress tolerance and specific diurnal and nocturnal cellular processes.

Badia MB, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF, Wheeler MC.

Plant Sci. 2015 Nov;240:193-203. doi: 10.1016/j.plantsci.2015.09.015. Epub 2015 Sep 25.

PMID:
26475199
19.

Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening.

Monti LL, Bustamante CA, Osorio S, Gabilondo J, Borsani J, Lauxmann MA, Maulión E, Valentini G, Budde CO, Fernie AR, Lara MV, Drincovich MF.

Food Chem. 2016 Jan 1;190:879-888. doi: 10.1016/j.foodchem.2015.06.043. Epub 2015 Jun 16.

PMID:
26213052
20.

Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate.

Tronconi MA, Wheeler MC, Martinatto A, Zubimendi JP, Andreo CS, Drincovich MF.

Phytochemistry. 2015 Mar;111:37-47. doi: 10.1016/j.phytochem.2014.11.009. Epub 2014 Nov 26.

PMID:
25433630
21.

Metabolic regulation of phytoplasma malic enzyme and phosphotransacetylase supports the use of malate as an energy source in these plant pathogens.

Saigo M, Golic A, Alvarez CE, Andreo CS, Hogenhout SA, Mussi MA, Drincovich MF.

Microbiology. 2014 Dec;160(Pt 12):2794-806. doi: 10.1099/mic.0.083469-0. Epub 2014 Oct 7.

PMID:
25294105
22.

Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species.

Klie S, Osorio S, Tohge T, Drincovich MF, Fait A, Giovannoni JJ, Fernie AR, Nikoloski Z.

Plant Physiol. 2014 Jan;164(1):55-68. doi: 10.1104/pp.113.226142. Epub 2013 Nov 15.

23.

Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit.

Lauxmann MA, Borsani J, Osorio S, Lombardo VA, Budde CO, Bustamante CA, Monti LL, Andreo CS, Fernie AR, Drincovich MF, Lara MV.

Plant Cell Environ. 2014 Mar;37(3):601-16. doi: 10.1111/pce.12181. Epub 2013 Sep 8.

24.

Biochemical approaches to C4 photosynthesis evolution studies: the case of malic enzymes decarboxylases.

Saigo M, Tronconi MA, Gerrard Wheeler MC, Alvarez CE, Drincovich MF, Andreo CS.

Photosynth Res. 2013 Nov;117(1-3):177-87. doi: 10.1007/s11120-013-9879-1. Epub 2013 Jul 7. Review.

PMID:
23832612
25.

Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C4 species.

Alvarez CE, Saigo M, Margarit E, Andreo CS, Drincovich MF.

Photosynth Res. 2013 May;115(1):65-80. doi: 10.1007/s11120-013-9839-9. Epub 2013 May 7.

PMID:
23649167
26.

Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana.

Arias CL, Andreo CS, Drincovich MF, Gerrard Wheeler MC.

Plant Mol Biol. 2013 Feb;81(3):297-307. doi: 10.1007/s11103-012-9999-6. Epub 2012 Dec 16.

PMID:
23242919
27.

Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold.

Lauxmann MA, Brun B, Borsani J, Bustamante CA, Budde CO, Lara MV, Drincovich MF.

PLoS One. 2012;7(12):e51052. doi: 10.1371/journal.pone.0051052. Epub 2012 Dec 6.

28.

Plastidial NADP-malic enzymes from grasses: unraveling the way to the C4 specific isoforms.

Saigo M, Alvarez CE, Andreo CS, Drincovich MF.

Plant Physiol Biochem. 2013 Feb;63:39-48. doi: 10.1016/j.plaphy.2012.11.009. Epub 2012 Nov 24.

PMID:
23228551
29.

Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins.

Bustamante CA, Budde CO, Borsani J, Lombardo VA, Lauxmann MA, Andreo CS, Lara MV, Drincovich MF.

Plant Physiol Biochem. 2012 Nov;60:35-45. doi: 10.1016/j.plaphy.2012.07.021. Epub 2012 Aug 3.

PMID:
22902552
30.

Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-malic enzyme activity.

Alvarez CE, Detarsio E, Moreno S, Andreo CS, Drincovich MF.

Plant Cell Physiol. 2012 Jun;53(6):1144-53. doi: 10.1093/pcp/pcs059. Epub 2012 Apr 17.

PMID:
22514092
31.

Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum.

Voll LM, Zell MB, Engelsdorf T, Saur A, Wheeler MG, Drincovich MF, Weber AP, Maurino VG.

New Phytol. 2012 Jul;195(1):189-202. doi: 10.1111/j.1469-8137.2012.04129.x. Epub 2012 Apr 12.

32.

Differential fumarate binding to Arabidopsis NAD+-malic enzymes 1 and -2 produces an opposite activity modulation.

Tronconi MA, Gerrard Wheeler MC, Drincovich MF, Andreo CS.

Biochimie. 2012 Jun;94(6):1421-30. doi: 10.1016/j.biochi.2012.03.017. Epub 2012 Apr 2.

PMID:
22487558
33.

Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage.

Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovich MF.

Plant Physiol. 2011 Dec;157(4):1696-710. doi: 10.1104/pp.111.186064. Epub 2011 Oct 20.

34.

Peach (Prunus persica) fruit response to anoxia: reversible ripening delay and biochemical changes.

Lara MV, Budde CO, Porrini L, Borsani J, Murray R, Andreo CS, Drincovich MF.

Plant Cell Physiol. 2011 Feb;52(2):392-403. doi: 10.1093/pcp/pcq200. Epub 2010 Dec 23.

PMID:
21186173
35.

Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon.

Bologna FP, Campos-Bermudez VA, Saavedra DD, Andreo CS, Drincovich MF.

J Microbiol. 2010 Oct;48(5):629-36. doi: 10.1007/s12275-010-0091-0. Epub 2010 Nov 3.

PMID:
21046341
36.

Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower.

Müller GL, Drincovich MF, Andreo CS, Lara MV.

J Exp Bot. 2010 Aug;61(13):3675-88. doi: 10.1093/jxb/erq187. Epub 2010 Jun 30.

PMID:
20591899
37.

NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control.

Tronconi MA, Gerrard Wheeler MC, Maurino VG, Drincovich MF, Andreo CS.

Biochem J. 2010 Sep 1;430(2):295-303. doi: 10.1042/BJ20100497.

PMID:
20528775
38.

Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation.

Campos-Bermudez VA, Bologna FP, Andreo CS, Drincovich MF.

FEBS J. 2010 Apr;277(8):1957-66. doi: 10.1111/j.1742-4658.2010.07617.x. Epub 2010 Mar 8.

39.

Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in Arabidopsis thaliana.

Tronconi MA, Maurino VG, Andreo CS, Drincovich MF.

J Biol Chem. 2010 Apr 16;285(16):11870-9. doi: 10.1074/jbc.M109.097477. Epub 2010 Feb 4.

40.

Analysis of Arabidopsis with highly reduced levels of malate and fumarate sheds light on the role of these organic acids as storage carbon molecules.

Zell MB, Fahnenstich H, Maier A, Saigo M, Voznesenskaya EV, Edwards GE, Andreo C, Schleifenbaum F, Zell C, Drincovich MF, Maurino VG.

Plant Physiol. 2010 Mar;152(3):1251-62. doi: 10.1104/pp.109.151795. Epub 2010 Jan 27.

41.

Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment.

Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF.

J Exp Bot. 2009;60(15):4315-33. doi: 10.1093/jxb/erp267. Epub 2009 Sep 4.

PMID:
19734260
42.

Identification of domains involved in the allosteric regulation of cytosolic Arabidopsis thaliana NADP-malic enzymes.

Gerrard Wheeler MC, Arias CL, Maurino VG, Andreo CS, Drincovich MF.

FEBS J. 2009 Oct;276(19):5665-77. doi: 10.1111/j.1742-4658.2009.07258.x. Epub 2009 Sep 2.

43.

Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways.

Engqvist M, Drincovich MF, Flügge UI, Maurino VG.

J Biol Chem. 2009 Sep 11;284(37):25026-37. doi: 10.1074/jbc.M109.021253. Epub 2009 Jul 7.

44.

Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications.

Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV.

J Exp Bot. 2009;60(6):1823-37. doi: 10.1093/jxb/erp055. Epub 2009 Mar 5.

PMID:
19264753
45.

Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots.

Detarsio E, Maurino VG, Alvarez CE, Müller GL, Andreo CS, Drincovich MF.

Plant Mol Biol. 2008 Nov;68(4-5):355-67. doi: 10.1007/s11103-008-9375-8. Epub 2008 Jul 13.

PMID:
18622731
46.

The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes.

Manavella PA, Dezar CA, Ariel FD, Drincovich MF, Chan RL.

J Exp Bot. 2008;59(11):3143-55. doi: 10.1093/jxb/ern170. Epub 2008 Jul 4.

PMID:
18603614
47.

Nicotiana tabacum NADP-malic enzyme: cloning, characterization and analysis of biological role.

Müller GL, Drincovich MF, Andreo CS, Lara MV.

Plant Cell Physiol. 2008 Mar;49(3):469-80. doi: 10.1093/pcp/pcn022. Epub 2008 Feb 13.

PMID:
18272530
48.

Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism.

Tronconi MA, Fahnenstich H, Gerrard Weehler MC, Andreo CS, Flügge UI, Drincovich MF, Maurino VG.

Plant Physiol. 2008 Apr;146(4):1540-52. doi: 10.1104/pp.107.114975. Epub 2008 Jan 25.

49.

Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness.

Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Fernie AR, Drincovich MF, Flügge UI, Maurino VG.

Plant Physiol. 2007 Nov;145(3):640-52. Epub 2007 Sep 20.

50.

Supplemental Content

Loading ...
Support Center