Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic solvent.

Knudsen C, Bavishi K, Viborg KM, Drew DP, Simonsen HT, Motawia MS, Møller BL, Laursen T.

Phytochemistry. 2020 Feb;170:112214. doi: 10.1016/j.phytochem.2019.112214. Epub 2019 Nov 30.

2.

Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia.

Ryan FJ, Drew DP, Douglas C, Leong LEX, Moldovan M, Lynn M, Fink N, Sribnaia A, Penttila I, McPhee AJ, Collins CT, Makrides M, Gibson RA, Rogers GB, Lynn DJ.

mSystems. 2019 Oct 29;4(5). pii: e00484-19. doi: 10.1128/mSystems.00484-19.

3.

In planta and in silico characterization of five sesquiterpene synthases from Vitis vinifera (cv. Shiraz) berries.

Dueholm B, Drew DP, Sweetman C, Simonsen HT.

Planta. 2019 Jan;249(1):59-70. doi: 10.1007/s00425-018-2986-7. Epub 2018 Aug 22.

PMID:
30136197
4.

Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene.

Drew DP, Andersen TB, Sweetman C, Møller BL, Ford C, Simonsen HT.

J Exp Bot. 2016 Feb;67(3):799-808. doi: 10.1093/jxb/erv491. Epub 2015 Nov 17.

5.

VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine).

Wong DC, Sweetman C, Drew DP, Ford CM.

BMC Genomics. 2013 Dec 16;14:882. doi: 10.1186/1471-2164-14-882.

6.

Transcriptome analysis of Thapsia laciniata Rouy provides insights into terpenoid biosynthesis and diversity in Apiaceae.

Drew DP, Dueholm B, Weitzel C, Zhang Y, Sensen CW, Simonsen HT.

Int J Mol Sci. 2013 Apr 25;14(5):9080-98. doi: 10.3390/ijms14059080.

7.
8.

Identification and characterization of a kunzeaol synthase from Thapsia garganica: implications for the biosynthesis of the pharmaceutical thapsigargin.

Pickel B, Drew DP, Manczak T, Weitzel C, Simonsen HT, Ro DK.

Biochem J. 2012 Dec 1;448(2):261-71. doi: 10.1042/BJ20120654.

PMID:
22938155
9.

Toward stable genetic engineering of human O-glycosylation in plants.

Yang Z, Bennett EP, Jørgensen B, Drew DP, Arigi E, Mandel U, Ulvskov P, Levery SB, Clausen H, Petersen BL.

Plant Physiol. 2012 Sep;160(1):450-63. doi: 10.1104/pp.112.198200. Epub 2012 Jul 12.

10.

Engineering mammalian mucin-type O-glycosylation in plants.

Yang Z, Drew DP, Jørgensen B, Mandel U, Bach SS, Ulvskov P, Levery SB, Bennett EP, Clausen H, Petersen BL.

J Biol Chem. 2012 Apr 6;287(15):11911-23. doi: 10.1074/jbc.M111.312918. Epub 2012 Feb 14.

11.
12.

Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi.

Drew DP, Hrmova M, Lunde C, Jacobs AK, Tester M, Fincher GB.

Biochim Biophys Acta. 2011 Jun;1808(6):1483-92. doi: 10.1016/j.bbamem.2010.11.013. Epub 2010 Nov 23.

14.

Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress.

Lunde C, Drew DP, Jacobs AK, Tester M.

Plant Physiol. 2007 Aug;144(4):1786-96. Epub 2007 Jun 7.

Supplemental Content

Support Center