Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Chronic nicotine exposure alters the neurophysiology of habenulo-interpeduncular circuitry.

Arvin MC, Jin XT, Yan Y, Wang Y, Ramsey MD, Kim VJ, Beckley NA, Henry BA, Drenan RM.

J Neurosci. 2019 Mar 13. pii: 2816-18. doi: 10.1523/JNEUROSCI.2816-18.2019. [Epub ahead of print]

PMID:
30867261
2.

Probing Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices via Laser Flash Photolysis of Photoactivatable Nicotine.

Arvin MC, Wokosin DL, Banala S, Lavis LD, Drenan RM.

J Vis Exp. 2019 Jan 25;(143). doi: 10.3791/58873.

PMID:
30735191
3.

Nicotinic Cholinergic Receptors in VTA Glutamate Neurons Modulate Excitatory Transmission.

Yan Y, Peng C, Arvin MC, Jin XT, Kim VJ, Ramsey MD, Wang Y, Banala S, Wokosin DL, McIntosh JM, Lavis LD, Drenan RM.

Cell Rep. 2018 May 22;23(8):2236-2244. doi: 10.1016/j.celrep.2018.04.062.

4.

Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission.

Peng C, Yan Y, Kim VJ, Engle SE, Berry JN, McIntosh JM, Neve RL, Drenan RM.

Eur J Neurosci. 2018 May 19. doi: 10.1111/ejn.13957. [Epub ahead of print]

PMID:
29779223
5.

Photoactivatable drugs for nicotinic optopharmacology.

Banala S, Arvin MC, Bannon NM, Jin XT, Macklin JJ, Wang Y, Peng C, Zhao G, Marshall JJ, Gee KR, Wokosin DL, Kim VJ, McIntosh JM, Contractor A, Lester HA, Kozorovitskiy Y, Drenan RM, Lavis LD.

Nat Methods. 2018 May;15(5):347-350. doi: 10.1038/nmeth.4637. Epub 2018 Mar 26.

6.

Deletion of lynx1 reduces the function of α6* nicotinic receptors.

Parker RL, O'Neill HC, Henley BM, Wageman CR, Drenan RM, Marks MJ, Miwa JM, Grady SR, Lester HA.

PLoS One. 2017 Dec 5;12(12):e0188715. doi: 10.1371/journal.pone.0188715. eCollection 2017.

7.

Selectivity of coronaridine congeners at nicotinic acetylcholine receptors and inhibitory activity on mouse medial habenula.

Arias HR, Jin X, Feuerbach D, Drenan RM.

Int J Biochem Cell Biol. 2017 Nov;92:202-209. doi: 10.1016/j.biocel.2017.10.006. Epub 2017 Oct 16.

8.

Altered nicotine reward-associated behavior following α4 nAChR subunit deletion in ventral midbrain.

Peng C, Engle SE, Yan Y, Weera MM, Berry JN, Arvin MC, Zhao G, McIntosh JM, Chester JA, Drenan RM.

PLoS One. 2017 Jul 31;12(7):e0182142. doi: 10.1371/journal.pone.0182142. eCollection 2017.

9.

TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus.

Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A, Stahlberg MA, Wagener RJ, Anderson K, Drenan RM, Lester HA, Miwa JM, Staiger JF, Fischer A, Dean C.

Nat Commun. 2017 Jul 19;8:15878. doi: 10.1038/ncomms15878.

10.

Nicotine Dependence Reveals Distinct Responses from Neurons and Their Resident Nicotinic Receptors in Medial Habenula.

Shih PY, McIntosh JM, Drenan RM.

Mol Pharmacol. 2015 Dec;88(6):1035-44. doi: 10.1124/mol.115.101444. Epub 2015 Oct 1.

11.

α6-Containing nicotinic acetylcholine receptors in midbrain dopamine neurons are poised to govern dopamine-mediated behaviors and synaptic plasticity.

Berry JN, Engle SE, McIntosh JM, Drenan RM.

Neuroscience. 2015 Sep 24;304:161-75. doi: 10.1016/j.neuroscience.2015.07.052. Epub 2015 Jul 23.

12.

The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors.

Wieskopf JS, Mathur J, Limapichat W, Post MR, Al-Qazzaz M, Sorge RE, Martin LJ, Zaykin DV, Smith SB, Freitas K, Austin JS, Dai F, Zhang J, Marcovitz J, Tuttle AH, Slepian PM, Clarke S, Drenan RM, Janes J, Al Sharari S, Segall SK, Aasvang EK, Lai W, Bittner R, Richards CI, Slade GD, Kehlet H, Walker J, Maskos U, Changeux JP, Devor M, Maixner W, Diatchenko L, Belfer I, Dougherty DA, Su AI, Lummis SC, Imad Damaj M, Lester HA, Patapoutian A, Mogil JS.

Sci Transl Med. 2015 May 13;7(287):287ra72. doi: 10.1126/scitranslmed.3009986.

13.

Evidence for a role for α6(∗) nAChRs in l-dopa-induced dyskinesias using Parkinsonian α6(∗) nAChR gain-of-function mice.

Bordia T, McGregor M, McIntosh JM, Drenan RM, Quik M.

Neuroscience. 2015 Jun 4;295:187-97. doi: 10.1016/j.neuroscience.2015.03.040. Epub 2015 Mar 24.

14.

Nicotine and ethanol cooperate to enhance ventral tegmental area AMPA receptor function via α6-containing nicotinic receptors.

Engle SE, McIntosh JM, Drenan RM.

Neuropharmacology. 2015 Apr;91:13-22. doi: 10.1016/j.neuropharm.2014.11.014. Epub 2014 Dec 4.

15.

Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula.

Shih PY, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, Drenan RM.

J Neurosci. 2014 Jul 16;34(29):9789-802. doi: 10.1523/JNEUROSCI.0476-14.2014.

16.

Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors.

Henderson BJ, Srinivasan R, Nichols WA, Dilworth CN, Gutierrez DF, Mackey ED, McKinney S, Drenan RM, Richards CI, Lester HA.

J Gen Physiol. 2014 Jan;143(1):51-66. doi: 10.1085/jgp.201311102.

17.

Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

Wang Y, Lee JW, Oh G, Grady SR, McIntosh JM, Brunzell DH, Cannon JR, Drenan RM.

J Neurochem. 2014 Apr;129(2):315-27. doi: 10.1111/jnc.12616. Epub 2013 Dec 13.

18.
19.

Nicotinic acetylcholine receptors containing α6 subunits contribute to alcohol reward-related behaviours.

Powers MS, Broderick HJ, Drenan RM, Chester JA.

Genes Brain Behav. 2013 Jul;12(5):543-53. doi: 10.1111/gbb.12042. Epub 2013 May 7.

20.

Local application of drugs to study nicotinic acetylcholine receptor function in mouse brain slices.

Engle SE, Broderick HJ, Drenan RM.

J Vis Exp. 2012 Oct 29;(68):e50034. doi: 10.3791/50034.

21.
22.

α6* nicotinic acetylcholine receptor expression and function in a visual salience circuit.

Mackey ED, Engle SE, Kim MR, O'Neill HC, Wageman CR, Patzlaff NE, Wang Y, Grady SR, McIntosh JM, Marks MJ, Lester HA, Drenan RM.

J Neurosci. 2012 Jul 25;32(30):10226-37. doi: 10.1523/JNEUROSCI.0007-12.2012.

23.

Nicotinic cholinergic mechanisms causing elevated dopamine release and abnormal locomotor behavior.

Cohen BN, Mackey ED, Grady SR, McKinney S, Patzlaff NE, Wageman CR, McIntosh JM, Marks MJ, Lester HA, Drenan RM.

Neuroscience. 2012 Jan 3;200:31-41. doi: 10.1016/j.neuroscience.2011.10.047. Epub 2011 Nov 4.

24.

Characterizing functional α6β2 nicotinic acetylcholine receptors in vitro: mutant β2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells.

Xiao C, Srinivasan R, Drenan RM, Mackey ED, McIntosh JM, Lester HA.

Biochem Pharmacol. 2011 Oct 15;82(8):852-61. doi: 10.1016/j.bcp.2011.05.005. Epub 2011 May 17.

25.

Striatal pathology underlies prion infection-mediated hyperactivity in mice.

Gunapala KM, Chang D, Hsu CT, Manaye K, Drenan RM, Switzer RC, Steele AD.

Prion. 2010 Oct-Dec;4(4):302-15. Epub 2010 Oct 22.

26.

Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors.

Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA.

J Neurosci. 2010 Jul 21;30(29):9877-89. doi: 10.1523/JNEUROSCI.2056-10.2010.

27.

Structural differences determine the relative selectivity of nicotinic compounds for native alpha 4 beta 2*-, alpha 6 beta 2*-, alpha 3 beta 4*- and alpha 7-nicotine acetylcholine receptors.

Grady SR, Drenan RM, Breining SR, Yohannes D, Wageman CR, Fedorov NB, McKinney S, Whiteaker P, Bencherif M, Lester HA, Marks MJ.

Neuropharmacology. 2010 Jun;58(7):1054-66. doi: 10.1016/j.neuropharm.2010.01.013. Epub 2010 Jan 28.

28.

In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors.

Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N, McIntosh JM, Bencherif M, Marks MJ, Lester HA.

Neuron. 2008 Oct 9;60(1):123-36. doi: 10.1016/j.neuron.2008.09.009.

29.

Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits.

Drenan RM, Nashmi R, Imoukhuede P, Just H, McKinney S, Lester HA.

Mol Pharmacol. 2008 Jan;73(1):27-41. Epub 2007 Oct 11.

PMID:
17932221
30.

Regulation of RGS2 and second messenger signaling in vascular smooth muscle cells by cGMP-dependent protein kinase.

Osei-Owusu P, Sun X, Drenan RM, Steinberg TH, Blumer KJ.

J Biol Chem. 2007 Oct 26;282(43):31656-65. Epub 2007 Aug 6.

31.

R7BP augments the function of RGS7*Gbeta5 complexes by a plasma membrane-targeting mechanism.

Drenan RM, Doupnik CA, Jayaraman M, Buchwalter AL, Kaltenbronn KM, Huettner JE, Linder ME, Blumer KJ.

J Biol Chem. 2006 Sep 22;281(38):28222-31. Epub 2006 Jul 25.

32.

Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family.

Drenan RM, Doupnik CA, Boyle MP, Muglia LJ, Huettner JE, Linder ME, Blumer KJ.

J Cell Biol. 2005 May 23;169(4):623-33. Epub 2005 May 16.

33.
34.

Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase.

Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA.

J Biol Chem. 2001 Nov 9;276(45):42063-9. Epub 2001 Aug 31.

35.

Key role for constitutive cyclooxygenase-2 of MDCK cells in basal signaling and response to released ATP.

Ostrom RS, Gregorian C, Drenan RM, Gabot K, Rana BK, Insel PA.

Am J Physiol Cell Physiol. 2001 Aug;281(2):C524-31.

Supplemental Content

Loading ...
Support Center