Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 116

1.

Reactive Enamines and Imines In Vivo: Lessons from the RidA Paradigm.

Borchert AJ, Ernst DC, Downs DM.

Trends Biochem Sci. 2019 May 15. pii: S0968-0004(19)30091-X. doi: 10.1016/j.tibs.2019.04.011. [Epub ahead of print] Review.

PMID:
31103411
2.

Conserved Pyridoxal 5'-Phosphate-Binding Protein YggS Impacts Amino Acid Metabolism through Pyridoxine 5'-Phosphate in Escherichia coli.

Ito T, Yamamoto K, Hori R, Yamauchi A, Downs DM, Hemmi H, Yoshimura T.

Appl Environ Microbiol. 2019 May 16;85(11). pii: e00430-19. doi: 10.1128/AEM.00430-19. Print 2019 Jun 1.

PMID:
30902856
3.

SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae.

Paxhia MD, Downs DM.

G3 (Bethesda). 2019 Feb 7;9(2):335-344. doi: 10.1534/g3.118.200831.

4.

Analyses of variants of the Ser/Thr dehydratase IlvA provide insight into 2-aminoacrylate metabolism in Salmonella enterica.

Borchert AJ, Downs DM.

J Biol Chem. 2018 Dec 14;293(50):19240-19249. doi: 10.1074/jbc.RA118.005626. Epub 2018 Oct 16.

PMID:
30327426
5.

PA5339, a RidA Homolog, Is Required for Full Growth in Pseudomonas aeruginosa.

Irons J, Hodge-Hanson KM, Downs DM.

J Bacteriol. 2018 Oct 23;200(22). pii: e00434-18. doi: 10.1128/JB.00434-18. Print 2018 Nov 15.

6.

Perturbation of the metabolic network in Salmonella enterica reveals cross-talk between coenzyme A and thiamine pathways.

Ernst DC, Borchert AJ, Downs DM.

PLoS One. 2018 May 23;13(5):e0197703. doi: 10.1371/journal.pone.0197703. eCollection 2018.

7.

The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling.

Downs DM, Bazurto JV, Gupta A, Fonseca LL, Voit EO.

AIMS Microbiol. 2018 Apr 8;4(2):289-303. doi: 10.3934/microbiol.2018.2.289. eCollection 2018.

PMID:
31294216
Free PMC Article
8.

Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in Saccharomyces cerevisiae.

Ernst DC, Downs DM.

MBio. 2018 Feb 27;9(1). pii: e00084-18. doi: 10.1128/mBio.00084-18.

9.

Increased Activity of Cystathionine β-Lyase Suppresses 2-Aminoacrylate Stress in Salmonella enterica.

Ernst DC, Christopherson MR, Downs DM.

J Bacteriol. 2018 Apr 9;200(9). pii: e00040-18. doi: 10.1128/JB.00040-18. Print 2018 May 1.

10.

Expression of Pyridoxal 5'-Phosphate-Independent Racemases Can Reduce 2-Aminoacrylate Stress in Salmonella enterica.

Hodge-Hanson KM, Zoino A, Downs DM.

J Bacteriol. 2018 Apr 9;200(9). pii: e00751-17. doi: 10.1128/JB.00751-17. Print 2018 May 1.

11.

Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica.

Bazurto JV, Dearth SP, Tague ED, Campagna SR, Downs DM.

Microb Cell. 2017 Nov 22;5(2):74-87. doi: 10.15698/mic2018.02.613.

12.

Endogenously generated 2-aminoacrylate inhibits motility in Salmonella enterica.

Borchert AJ, Downs DM.

Sci Rep. 2017 Oct 11;7(1):12971. doi: 10.1038/s41598-017-13030-x.

13.

Members of the Rid protein family have broad imine deaminase activity and can accelerate the Pseudomonas aeruginosa D-arginine dehydrogenase (DauA) reaction in vitro.

Hodge-Hanson KM, Downs DM.

PLoS One. 2017 Sep 28;12(9):e0185544. doi: 10.1371/journal.pone.0185544. eCollection 2017.

14.

The Response to 2-Aminoacrylate Differs in Escherichia coli and Salmonella enterica, despite Shared Metabolic Components.

Borchert AJ, Downs DM.

J Bacteriol. 2017 Jun 27;199(14). pii: e00140-17. doi: 10.1128/JB.00140-17. Print 2017 Jul 15.

15.

Metabolic network structure and function in bacteria goes beyond conserved enzyme components.

Bazurto JV, Downs DM.

Microb Cell. 2016 Apr 14;3(6):260-262. doi: 10.15698/mic2016.06.509.

16.

Der f 34, a Novel Major House Dust Mite Allergen Belonging to a Highly Conserved Rid/YjgF/YER057c/UK114 Family of Imine Deaminases.

ElRamlawy KG, Fujimura T, Baba K, Kim JW, Kawamoto C, Isobe T, Abe T, Hodge-Hanson K, Downs DM, Refaat IH, Beshr Al-Azhary D, Aki T, Asaoku Y, Hayashi T, Katsutani T, Tsuboi S, Ono K, Kawamoto S.

J Biol Chem. 2016 Oct 7;291(41):21607-21615. Epub 2016 Aug 18.

17.

L-2,3-diaminopropionate generates diverse metabolic stresses in Salmonella enterica.

Ernst DC, Anderson ME, Downs DM.

Mol Microbiol. 2016 Jul;101(2):210-23. doi: 10.1111/mmi.13384. Epub 2016 May 6.

18.

An Unexpected Route to an Essential Cofactor: Escherichia coli Relies on Threonine for Thiamine Biosynthesis.

Bazurto JV, Farley KR, Downs DM.

MBio. 2016 Jan 5;7(1):e01840-15. doi: 10.1128/mBio.01840-15.

19.

2-Aminoacrylate Stress Induces a Context-Dependent Glycine Requirement in ridA Strains of Salmonella enterica.

Ernst DC, Downs DM.

J Bacteriol. 2015 Nov 16;198(3):536-43. doi: 10.1128/JB.00804-15. Print 2016 Feb 1.

20.
21.

Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica.

Bazurto JV, Heitman NJ, Downs DM.

J Bacteriol. 2015 Sep;197(17):2821-30. doi: 10.1128/JB.00282-15. Epub 2015 Jun 22.

22.

Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family.

Niehaus TD, Gerdes S, Hodge-Hanson K, Zhukov A, Cooper AJ, ElBadawi-Sidhu M, Fiehn O, Downs DM, Hanson AD.

BMC Genomics. 2015 May 15;16:382. doi: 10.1186/s12864-015-1584-3.

23.

The STM4195 gene product (PanS) transports coenzyme A precursors in Salmonella enterica.

Ernst DC, Downs DM.

J Bacteriol. 2015 Apr;197(8):1368-77. doi: 10.1128/JB.02506-14. Epub 2015 Feb 2.

24.

From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species.

Downs DM, Ernst DC.

Mol Microbiol. 2015 Apr;96(2):211-9. doi: 10.1111/mmi.12945. Epub 2015 Feb 26. Review.

25.

The cysteine desulfhydrase CdsH is conditionally required for sulfur mobilization to the thiamine thiazole in Salmonella enterica.

Palmer LD, Leung MH, Downs DM.

J Bacteriol. 2014 Nov;196(22):3964-70. doi: 10.1128/JB.02159-14. Epub 2014 Sep 2.

26.

Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids.

Niehaus TD, Nguyen TN, Gidda SK, ElBadawi-Sidhu M, Lambrecht JA, McCarty DR, Downs DM, Cooper AJ, Fiehn O, Mullen RT, Hanson AD.

Plant Cell. 2014 Jul;26(7):3010-22. doi: 10.1105/tpc.114.126854. Epub 2014 Jul 28.

27.

Endogenous synthesis of 2-aminoacrylate contributes to cysteine sensitivity in Salmonella enterica.

Ernst DC, Lambrecht JA, Schomer RA, Downs DM.

J Bacteriol. 2014 Sep;196(18):3335-42. doi: 10.1128/JB.01960-14. Epub 2014 Jul 7.

28.

The games: what can the sports medicine community learn from raves?

Grange JT, Corbett SW, Downs DM.

Curr Sports Med Rep. 2014 May-Jun;13(3):155-62. doi: 10.1249/JSR.0000000000000060.

PMID:
24819006
29.

Amino-4-imidazolecarboxamide ribotide directly inhibits coenzyme A biosynthesis in Salmonella enterica.

Bazurto JV, Downs DM.

J Bacteriol. 2014 Feb;196(4):772-9. doi: 10.1128/JB.01087-13. Epub 2013 Dec 2.

30.

The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites.

Palmer LD, Downs DM.

J Biol Chem. 2013 Oct 18;288(42):30693-9. doi: 10.1074/jbc.M113.500280. Epub 2013 Sep 6.

31.

Decreased coenzyme A levels in ridA mutant strains of Salmonella enterica result from inactivated serine hydroxymethyltransferase.

Flynn JM, Christopherson MR, Downs DM.

Mol Microbiol. 2013 Aug;89(4):751-9. doi: 10.1111/mmi.12313. Epub 2013 Jul 19.

32.

In the absence of RidA, endogenous 2-aminoacrylate inactivates alanine racemases by modifying the pyridoxal 5'-phosphate cofactor.

Flynn JM, Downs DM.

J Bacteriol. 2013 Aug;195(16):3603-9. doi: 10.1128/JB.00463-13. Epub 2013 Jun 7.

33.

RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life.

Lambrecht JA, Schmitz GE, Downs DM.

MBio. 2013 Feb 5;4(1):e00033-13. doi: 10.1128/mBio.00033-13.

34.

Perturbations in histidine biosynthesis uncover robustness in the metabolic network of Salmonella enterica.

Koenigsknecht MJ, Lambrecht JA, Fenlon LA, Downs DM.

PLoS One. 2012;7(10):e48207. doi: 10.1371/journal.pone.0048207. Epub 2012 Oct 25.

35.
36.

Analysis of ThiC variants in the context of the metabolic network of Salmonella enterica.

Palmer LD, Dougherty MJ, Downs DM.

J Bacteriol. 2012 Nov;194(22):6088-95. doi: 10.1128/JB.01361-12. Epub 2012 Sep 7.

37.

Suppressor analyses identify threonine as a modulator of ridA mutant phenotypes in Salmonella enterica.

Christopherson MR, Lambrecht JA, Downs D, Downs DM.

PLoS One. 2012;7(8):e43082. doi: 10.1371/journal.pone.0043082. Epub 2012 Aug 10.

38.

Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate.

Boyd JM, Teoh WP, Downs DM.

J Bacteriol. 2012 Feb;194(3):576-83. doi: 10.1128/JB.05988-11. Epub 2011 Nov 18.

39.

Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5'-phosphate (PLP)-dependent enzyme reactions.

Lambrecht JA, Flynn JM, Downs DM.

J Biol Chem. 2012 Jan 27;287(5):3454-61. doi: 10.1074/jbc.M111.304477. Epub 2011 Nov 17.

40.

The rhodanese domain of ThiI is both necessary and sufficient for synthesis of the thiazole moiety of thiamine in Salmonella enterica.

Martinez-Gomez NC, Palmer LD, Vivas E, Roach PL, Downs DM.

J Bacteriol. 2011 Sep;193(18):4582-7. doi: 10.1128/JB.05325-11. Epub 2011 Jul 1.

41.

FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins.

Boyd JM, Endrizzi JA, Hamilton TL, Christopherson MR, Mulder DW, Downs DM, Peters JW.

J Bacteriol. 2011 Feb;193(4):887-95. doi: 10.1128/JB.00730-10. Epub 2010 Dec 10.

42.

Plasticity in the purine-thiamine metabolic network of Salmonella.

Bazurto JV, Downs DM.

Genetics. 2011 Feb;187(2):623-31. doi: 10.1534/genetics.110.124362. Epub 2010 Dec 6.

43.

Members of the YjgF/YER057c/UK114 family of proteins inhibit phosphoribosylamine synthesis in vitro.

Lambrecht JA, Browne BA, Downs DM.

J Biol Chem. 2010 Nov 5;285(45):34401-7. doi: 10.1074/jbc.M110.160515. Epub 2010 Sep 3.

44.

Thiamine biosynthesis can be used to dissect metabolic integration.

Koenigsknecht MJ, Downs DM.

Trends Microbiol. 2010 Jun;18(6):240-7. doi: 10.1016/j.tim.2010.03.003. Epub 2010 Apr 8.

45.

Phosphoribosylpyrophosphate synthetase (PrsA) variants alter cellular pools of ribose 5-phosphate and influence thiamine synthesis in Salmonella enterica.

Koenigsknecht MJ, Fenlon LA, Downs DM.

Microbiology. 2010 Mar;156(Pt 3):950-9. doi: 10.1099/mic.0.033050-0. Epub 2009 Dec 3. Erratum in: Microbiology. 2010 May;156(Pt 5):1574.

46.

MMBR to highlight microbial evolution, diversity, and ecology in 2009.

Downs DM.

Microbiol Mol Biol Rev. 2009 Mar;73(1):13. doi: 10.1128/MMBR.00004-09. No abstract available.

47.

Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica.

Lewis JA, Boyd JM, Downs DM, Escalante-Semerena JC.

J Bacteriol. 2009 Apr;191(7):2069-76. doi: 10.1128/JB.01577-08. Epub 2009 Jan 9.

48.

Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica.

Thorgersen MP, Downs DM.

Microbiology. 2009 Jan;155(Pt 1):295-304. doi: 10.1099/mic.0.020727-0.

PMID:
19118370
49.

Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins.

Boyd JM, Drevland RM, Downs DM, Graham DE.

J Bacteriol. 2009 Mar;191(5):1490-7. doi: 10.1128/JB.01469-08. Epub 2008 Dec 29.

50.

Reaction of AdoMet with ThiC generates a backbone free radical.

Martinez-Gomez NC, Poyner RR, Mansoorabadi SO, Reed GH, Downs DM.

Biochemistry. 2009 Jan 20;48(2):217-9. doi: 10.1021/bi802154j.

Supplemental Content

Loading ...
Support Center