Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 269

1.

Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble.

Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA.

Nat Commun. 2019 Jul 5;10(1):3001. doi: 10.1038/s41467-019-10780-2.

2.

Candidate Phyla Radiation Roizmanbacteria From Hot Springs Have Novel and Unexpectedly Abundant CRISPR-Cas Systems.

Chen LX, Al-Shayeb B, Méheust R, Li WJ, Doudna JA, Banfield JF.

Front Microbiol. 2019 May 3;10:928. doi: 10.3389/fmicb.2019.00928. eCollection 2019.

3.

Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.

Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH, Heineike BM, Fitzsimmons CM, Oakes BL, Qu J, Prasad N, Rosenberg OS, Savage DF, El-Samad H, Doudna JA, Kortemme T.

Nat Commun. 2019 May 9;10(1):2127. doi: 10.1038/s41467-019-09985-2.

4.

Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics.

Ricci CG, Chen JS, Miao Y, Jinek M, Doudna JA, McCammon JA, Palermo G.

ACS Cent Sci. 2019 Apr 24;5(4):651-662. doi: 10.1021/acscentsci.9b00020. Epub 2019 Mar 7.

5.

A Unified Resource for Tracking Anti-CRISPR Names.

Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B.

CRISPR J. 2018 Oct;1:304-305. doi: 10.1089/crispr.2018.0043. No abstract available.

PMID:
31021273
6.

Author Correction: CasX enzymes comprise a distinct family of RNA-guided genome editors.

Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA.

Nature. 2019 Apr;568(7752):E8-E10. doi: 10.1038/s41586-019-1084-8.

PMID:
30944483
7.

Broad-spectrum enzymatic inhibition of CRISPR-Cas12a.

Knott GJ, Thornton BW, Lobba MJ, Liu JJ, Al-Shayeb B, Watters KE, Doudna JA.

Nat Struct Mol Biol. 2019 Apr;26(4):315-321. doi: 10.1038/s41594-019-0208-z. Epub 2019 Apr 1.

PMID:
30936531
8.

Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules.

Cao Y, Ma E, Cestellos-Blanco S, Zhang B, Qiu R, Su Y, Doudna JA, Yang P.

Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7899-7904. doi: 10.1073/pnas.1818553116. Epub 2019 Mar 28.

PMID:
30923112
9.

CasX enzymes comprise a distinct family of RNA-guided genome editors.

Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA.

Nature. 2019 Feb;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub 2019 Feb 4. Erratum in: Nature. 2019 Apr;568(7752):E8-E10.

PMID:
30718774
10.

Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response.

Heler R, Wright AV, Vucelja M, Doudna JA, Marraffini LA.

Cell Host Microbe. 2019 Feb 13;25(2):242-249.e3. doi: 10.1016/j.chom.2018.12.016. Epub 2019 Jan 29.

PMID:
30709780
11.

A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System.

Wright AV, Wang JY, Burstein D, Harrington LB, Paez-Espino D, Kyrpides NC, Iavarone AT, Banfield JF, Doudna JA.

Mol Cell. 2019 Feb 21;73(4):727-737.e3. doi: 10.1016/j.molcel.2018.12.015. Epub 2019 Jan 29.

PMID:
30709710
12.

CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification.

Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, Yokoo R, Arkin AP, Doudna JA, Savage DF.

Cell. 2019 Jan 10;176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052.

PMID:
30633905
13.

Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.

Jiang F, Liu JJ, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA.

Mol Cell. 2019 Feb 7;73(3):601-610.e5. doi: 10.1016/j.molcel.2018.11.016. Epub 2018 Dec 27.

PMID:
30595438
14.

CRISPR-Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV-host factor interactions.

Hultquist JF, Hiatt J, Schumann K, McGregor MJ, Roth TL, Haas P, Doudna JA, Marson A, Krogan NJ.

Nat Protoc. 2019 Jan;14(1):1-27. doi: 10.1038/s41596-018-0069-7.

15.

Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.

Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA.

Q Rev Biophys. 2018;51. pii: e91. doi: 10.1017/S0033583518000070. Epub 2018 Aug 3.

16.

Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.

Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA.

Science. 2018 Nov 16;362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18.

PMID:
30337455
17.

Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner.

Mancini A, Xavier-Magalhães A, Woods WS, Nguyen KT, Amen AM, Hayes JL, Fellmann C, Gapinske M, McKinney AM, Hong C, Jones LE, Walsh KM, Bell RJA, Doudna JA, Costa BM, Song JS, Perez-Pinera P, Costello JF.

Cancer Cell. 2018 Sep 10;34(3):513-528.e8. doi: 10.1016/j.ccell.2018.08.003.

PMID:
30205050
18.

Systematic discovery of natural CRISPR-Cas12a inhibitors.

Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA.

Science. 2018 Oct 12;362(6411):236-239. doi: 10.1126/science.aau5138. Epub 2018 Sep 6.

19.

CRISPR-Cas guides the future of genetic engineering.

Knott GJ, Doudna JA.

Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011. Review.

20.

RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a.

Tambe A, East-Seletsky A, Knott GJ, Doudna JA, O'Connell MR.

Cell Rep. 2018 Jul 24;24(4):1025-1036. doi: 10.1016/j.celrep.2018.06.105.

21.

Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection.

Huang CH, Lee KC, Doudna JA.

Trends Cancer. 2018 Jul;4(7):499-512. doi: 10.1016/j.trecan.2018.05.006. Epub 2018 Jun 13. Review.

22.

Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing.

Rouet R, Thuma BA, Roy MD, Lintner NG, Rubitski DM, Finley JE, Wisniewska HM, Mendonsa R, Hirsh A, de Oñate L, Compte Barrón J, McLellan TJ, Bellenger J, Feng X, Varghese A, Chrunyk BA, Borzilleri K, Hesp KD, Zhou K, Ma N, Tu M, Dullea R, McClure KF, Wilson RC, Liras S, Mascitti V, Doudna JA.

J Am Chem Soc. 2018 May 30;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub 2018 May 18.

23.

Correction: Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain.

Lintner NG, McClure KF, Petersen D, Londregan AT, Piotrowski DW, Wei L, Xiao J, Bolt M, Loria PM, Maguire B, Geoghegan KF, Huang A, Rolph T, Liras S, Doudna JA, Dullea RG, Cate JHD.

PLoS Biol. 2018 Apr 17;16(4):e1002628. doi: 10.1371/journal.pbio.1002628. eCollection 2018 Apr.

24.

Programmable RNA recognition using a CRISPR-associated Argonaute.

Lapinaite A, Doudna JA, Cate JHD.

Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3368-3373. doi: 10.1073/pnas.1717725115. Epub 2018 Mar 12.

25.

CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity.

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA.

Science. 2018 Apr 27;360(6387):436-439. doi: 10.1126/science.aar6245. Epub 2018 Feb 15.

26.

Spotlight: A Conversation with Laura Kiessling and Jennifer Doudna.

Kiessling LL, Doudna JA.

ACS Chem Biol. 2018 Feb 16;13(2):290-295. doi: 10.1021/acschembio.8b00108.

PMID:
29448761
27.

RNA-dependent RNA targeting by CRISPR-Cas9.

Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA.

Elife. 2018 Jan 5;7. pii: e32724. doi: 10.7554/eLife.32724.

28.

CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing.

Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ.

Nat Commun. 2017 Dec 8;8(1):2024. doi: 10.1038/s41467-017-01836-2.

29.

Widespread Translational Remodeling during Human Neuronal Differentiation.

Blair JD, Hockemeyer D, Doudna JA, Bateup HS, Floor SN.

Cell Rep. 2017 Nov 14;21(7):2005-2016. doi: 10.1016/j.celrep.2017.10.095.

30.

A thermostable Cas9 with increased lifetime in human plasma.

Harrington LB, Paez-Espino D, Staahl BT, Chen JS, Ma E, Kyrpides NC, Doudna JA.

Nat Commun. 2017 Nov 10;8(1):1424. doi: 10.1038/s41467-017-01408-4.

31.

Genomes in Focus: Development and Applications of CRISPR-Cas9 Imaging Technologies.

Knight SC, Tjian R, Doudna JA.

Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4329-4337. doi: 10.1002/anie.201709201. Epub 2018 Feb 28. Review.

32.

Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.

Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA.

Nature. 2017 Oct 19;550(7676):407-410. doi: 10.1038/nature24268. Epub 2017 Sep 20.

33.

Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme.

Knott GJ, East-Seletsky A, Cofsky JC, Holton JM, Charles E, O'Connell MR, Doudna JA.

Nat Struct Mol Biol. 2017 Oct;24(10):825-833. doi: 10.1038/nsmb.3466. Epub 2017 Sep 11.

34.

A Broad-Spectrum Inhibitor of CRISPR-Cas9.

Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ, Sontheimer EJ, Davidson AR, Maxwell KL, Doudna JA.

Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.

35.

A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.

Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A.

Sci Adv. 2017 Aug 4;3(8):eaao0027. doi: 10.1126/sciadv.aao0027. eCollection 2017 Aug.

36.

Structures of the CRISPR genome integration complex.

Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA.

Science. 2017 Sep 15;357(6356):1113-1118. doi: 10.1126/science.aao0679. Epub 2017 Jul 20.

37.

Disabling Cas9 by an anti-CRISPR DNA mimic.

Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA.

Sci Adv. 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.

38.

DNA recognition by an RNA-guided bacterial Argonaute.

Doxzen KW, Doudna JA.

PLoS One. 2017 May 17;12(5):e0177097. doi: 10.1371/journal.pone.0177097. eCollection 2017.

39.

High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding.

Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, Doudna JA, Greenleaf WJ.

Proc Natl Acad Sci U S A. 2017 May 23;114(21):5461-5466. doi: 10.1073/pnas.1700557114. Epub 2017 May 11.

40.

RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.

East-Seletsky A, O'Connell MR, Burstein D, Knott GJ, Doudna JA.

Mol Cell. 2017 May 4;66(3):373-383.e3. doi: 10.1016/j.molcel.2017.04.008.

41.

Correction: RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

Liu TY, Iavarone AT, Doudna JA.

PLoS One. 2017 Apr 6;12(4):e0175612. doi: 10.1371/journal.pone.0175612. eCollection 2017.

42.

CRISPR-Cas9 Structures and Mechanisms.

Jiang F, Doudna JA.

Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30. Review.

PMID:
28375731
43.

Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery.

Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV.

Nucleic Acids Res. 2017 Jun 20;45(11):e98. doi: 10.1093/nar/gkx154.

44.

Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain.

Lintner NG, McClure KF, Petersen D, Londregan AT, Piotrowski DW, Wei L, Xiao J, Bolt M, Loria PM, Maguire B, Geoghegan KF, Huang A, Rolph T, Liras S, Doudna JA, Dullea RG, Cate JH.

PLoS Biol. 2017 Mar 21;15(3):e2001882. doi: 10.1371/journal.pbio.2001882. eCollection 2017 Mar. Erratum in: PLoS Biol. 2018 Apr 17;16(4):e1002628.

45.

RNA-based recognition and targeting: sowing the seeds of specificity.

Gorski SA, Vogel J, Doudna JA.

Nat Rev Mol Cell Biol. 2017 Apr;18(4):215-228. doi: 10.1038/nrm.2016.174. Epub 2017 Feb 15. Review.

PMID:
28196981
46.

Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes.

Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA.

Nat Biotechnol. 2017 May;35(5):431-434. doi: 10.1038/nbt.3806. Epub 2017 Feb 13.

PMID:
28191903
47.

RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

Liu TY, Iavarone AT, Doudna JA.

PLoS One. 2017 Jan 23;12(1):e0170552. doi: 10.1371/journal.pone.0170552. eCollection 2017. Erratum in: PLoS One. 2017 Apr 6;12 (4):e0175612.

48.

Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair.

Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, Shobha T, Mehdipour M, Liu H, Huang WC, Lan F, Bray NL, Li S, Corn JE, Kataoka K, Doudna JA, Conboy I, Murthy N.

Nat Biomed Eng. 2017;1:889-901. doi: 10.1038/s41551-017-0137-2. Epub 2017 Oct 2.

49.

Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA.

Mol Cell. 2017 Jan 5;65(1):168-175. doi: 10.1016/j.molcel.2016.11.031. Epub 2016 Dec 22.

50.

Cornerstones of CRISPR-Cas in drug discovery and therapy.

Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE.

Nat Rev Drug Discov. 2017 Feb;16(2):89-100. doi: 10.1038/nrd.2016.238. Epub 2016 Dec 23. Review.

Supplemental Content

Loading ...
Support Center