Warning: The NCBI web site requires JavaScript to function. more...
Fetching bibliography...
Generate a file for use with external citation management software.
Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product.
Braun KA, Dombek KM, Young ET.
Mol Cell Biol. 2015 Dec 14;36(4):628-44. doi: 10.1128/MCB.00436-15. Print 2016 Feb 15.
Similar articles
Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions.
Parua PK, Dombek KM, Young ET.
J Biol Chem. 2014 Dec 19;289(51):35542-60. doi: 10.1074/jbc.M114.592287. Epub 2014 Oct 29.
Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling.
Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET.
Sci Signal. 2014 Jul 8;7(333):ra64. doi: 10.1126/scisignal.2005000.
14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA polymerase II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae.
Braun KA, Parua PK, Dombek KM, Miner GE, Young ET.
Mol Cell Biol. 2013 Feb;33(4):712-24. doi: 10.1128/MCB.01226-12. Epub 2012 Dec 3.
Integrating external biological knowledge in the construction of regulatory networks from time-series expression data.
Lo K, Raftery AE, Dombek KM, Zhu J, Schadt EE, Bumgarner RE, Yeung KY.
BMC Syst Biol. 2012 Aug 16;6:101. doi: 10.1186/1752-0509-6-101.
Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation.
Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE.
PLoS Biol. 2012;10(4):e1001301. doi: 10.1371/journal.pbio.1001301. Epub 2012 Apr 3.
Construction of regulatory networks using expression time-series data of a genotyped population.
Yeung KY, Dombek KM, Lo K, Mittler JE, Zhu J, Schadt EE, Bumgarner RE, Raftery AE.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19436-41. doi: 10.1073/pnas.1116442108. Epub 2011 Nov 14.
Toward a global analysis of metabolites in regulatory mutants of yeast.
Humston EM, Dombek KM, Tu BP, Young ET, Synovec RE.
Anal Bioanal Chem. 2011 Nov;401(8):2387-402. doi: 10.1007/s00216-011-4800-2. Epub 2011 Mar 17.
14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain.
Parua PK, Ratnakumar S, Braun KA, Dombek KM, Arms E, Ryan PM, Young ET.
Mol Cell Biol. 2010 Nov;30(22):5273-83. doi: 10.1128/MCB.00715-10. Epub 2010 Sep 20.
Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae.
Young ET, Yen K, Dombek KM, Law GL, Chang E, Arms E.
Mol Microbiol. 2009 Oct;74(2):364-83. doi: 10.1111/j.1365-2958.2009.06866.x. Epub 2009 Sep 2.
Time-dependent profiling of metabolites from Snf1 mutant and wild type yeast cells.
Humston EM, Dombek KM, Hoggard JC, Young ET, Synovec RE.
Anal Chem. 2008 Nov 1;80(21):8002-11. doi: 10.1021/ac800998j. Epub 2008 Oct 1.
Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression.
Young ET, Tachibana C, Chang HW, Dombek KM, Arms EM, Biddick R.
Mol Cell Biol. 2008 Apr;28(8):2509-16. doi: 10.1128/MCB.00658-07. Epub 2008 Feb 4.
Identification and evaluation of cycling yeast metabolites in two-dimensional comprehensive gas chromatography-time-of-flight-mass spectrometry data.
Mohler RE, Tu BP, Dombek KM, Hoggard JC, Young ET, Synovec RE.
J Chromatogr A. 2008 Apr 4;1186(1-2):401-11. Epub 2007 Oct 25.
Cyclic changes in metabolic state during the life of a yeast cell.
Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET, Synovec RE, McKnight SL.
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16886-91. Epub 2007 Oct 16.
Comprehensive analysis of yeast metabolite GC x GC-TOFMS data: combining discovery-mode and deconvolution chemometric software.
Mohler RE, Dombek KM, Hoggard JC, Pierce KM, Young ET, Synovec RE.
Analyst. 2007 Aug;132(8):756-67. Epub 2007 May 22.
Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells.
Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE.
Anal Chem. 2006 Apr 15;78(8):2700-9.
The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.
Dombek KM, Kacherovsky N, Young ET.
J Biol Chem. 2004 Sep 10;279(37):39165-74. Epub 2004 Jun 25.
Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.
Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET.
Genetics. 2003 Dec;165(4):1745-59.
Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8.
Young ET, Dombek KM, Tachibana C, Ideker T.
J Biol Chem. 2003 Jul 11;278(28):26146-58. Epub 2003 Apr 3.
Evolution of a glucose-regulated ADH gene in the genus Saccharomyces.
Young ET, Sloan J, Miller B, Li N, van Riper K, Dombek KM.
Gene. 2000 Mar 21;245(2):299-309.
Post-translational regulation of Adr1 activity is mediated by its DNA binding domain.
Sloan JS, Dombek KM, Young ET.
J Biol Chem. 1999 Dec 31;274(53):37575-82.
Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression.
Dombek KM, Voronkova V, Raney A, Young ET.
Mol Cell Biol. 1999 Sep;19(9):6029-40.
Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression.
Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM.
J Biol Chem. 1998 Nov 27;273(48):32080-7.
Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1.
Dombek KM, Young ET.
Mol Cell Biol. 1997 Mar;17(3):1450-8.
Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1.
Cheng C, Kacherovsky N, Dombek KM, Camier S, Thukral SK, Rhim E, Young ET.
Mol Cell Biol. 1994 Jun;14(6):3842-52.
ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1.
Dombek KM, Camier S, Young ET.
Mol Cell Biol. 1993 Jul;13(7):4391-9.
Regulation of Glycolytic Flux and Ethanol Production in Saccharomyces cerevisiae: Effects of Intracellular Adenine Nucleotide Concentrations on the In Vitro Activities of Hexokinase, Phosphofructokinase, Phosphoglycerate Kinase, and Pyruvate Kinase.
Alterthum F, Dombek KM, Ingram LO.
Appl Environ Microbiol. 1989 May;55(5):1312-4.
Intracellular accumulation of AMP as a cause for the decline in rate of ethanol production by Saccharomyces cerevisiae during batch fermentation.
Dombek KM, Ingram LO.
Appl Environ Microbiol. 1988 Jan;54(1):98-104.
Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH.
Appl Environ Microbiol. 1987 Jun;53(6):1286-91.
Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation.
Appl Environ Microbiol. 1986 Nov;52(5):975-81.
Determination of the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation.
Appl Environ Microbiol. 1986 Jan;51(1):197-200.
Effects of ethanol on the Escherichia coli plasma membrane.
J Bacteriol. 1984 Jan;157(1):233-9.
On the relationship between alcohol narcosis and membrane fluidity.
Ingram LO, Carey VC, Dombek KM.
Subst Alcohol Actions Misuse. 1982;3(4):213-24.
Filters: Manage Filters