Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells.

Manoranjan B, Chokshi C, Venugopal C, Subapanditha M, Savage N, Tatari N, Provias JP, Murty NK, Moffat J, Doble BW, Singh SK.

Oncogene. 2019 Nov 6. doi: 10.1038/s41388-019-1086-x. [Epub ahead of print]

PMID:
31695152
2.

OTUD7A Regulates Neurodevelopmental Phenotypes in the 15q13.3 Microdeletion Syndrome.

Uddin M, Unda BK, Kwan V, Holzapfel NT, White SH, Chalil L, Woodbury-Smith M, Ho KS, Harward E, Murtaza N, Dave B, Pellecchia G, D'Abate L, Nalpathamkalam T, Lamoureux S, Wei J, Speevak M, Stavropoulos J, Hope KJ, Doble BW, Nielsen J, Wassman ER, Scherer SW, Singh KK.

Am J Hum Genet. 2018 Feb 1;102(2):278-295. doi: 10.1016/j.ajhg.2018.01.006.

3.

A Single TCF Transcription Factor, Regardless of Its Activation Capacity, Is Sufficient for Effective Trilineage Differentiation of ESCs.

Moreira S, Polena E, Gordon V, Abdulla S, Mahendram S, Cao J, Blais A, Wood GA, Dvorkin-Gheva A, Doble BW.

Cell Rep. 2017 Sep 5;20(10):2424-2438. doi: 10.1016/j.celrep.2017.08.043.

4.

GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia.

Guezguez B, Almakadi M, Benoit YD, Shapovalova Z, Rahmig S, Fiebig-Comyn A, Casado FL, Tanasijevic B, Bresolin S, Masetti R, Doble BW, Bhatia M.

Cancer Cell. 2016 Jan 11;29(1):61-74. doi: 10.1016/j.ccell.2015.11.012.

5.

Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-Initiating Cells.

Venugopal C, Hallett R, Vora P, Manoranjan B, Mahendram S, Qazi MA, McFarlane N, Subapanditha M, Nolte SM, Singh M, Bakhshinyan D, Garg N, Vijayakumar T, Lach B, Provias JP, Reddy K, Murty NK, Doble BW, Bhatia M, Hassell JA, Singh SK.

Clin Cancer Res. 2015 Dec 1;21(23):5324-37. doi: 10.1158/1078-0432.CCR-14-3147. Epub 2015 Jul 7.

6.

Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway.

Khan KA, Dô F, Marineau A, Doyon P, Clément JF, Woodgett JR, Doble BW, Servant MJ.

Mol Cell Biol. 2015 Sep 1;35(17):3029-43. doi: 10.1128/MCB.00344-15. Epub 2015 Jun 22.

7.

Glycogen synthase kinase-3 (Gsk-3) plays a fundamental role in maintaining DNA methylation at imprinted loci in mouse embryonic stem cells.

Meredith GD, D'Ippolito A, Dudas M, Zeidner LC, Hostetter L, Faulds K, Arnold TH, Popkie AP, Doble BW, Marnellos G, Adams C, Wang Y, Phiel CJ.

Mol Biol Cell. 2015 Jun 1;26(11):2139-50. doi: 10.1091/mbc.E15-01-0013. Epub 2015 Apr 1.

8.

Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/β-Catenin Signaling Pathways.

Bartman CM, Egelston J, Kattula S, Zeidner LC, D'Ippolito A, Doble BW, Phiel CJ.

Front Endocrinol (Lausanne). 2014 Aug 13;5:133. doi: 10.3389/fendo.2014.00133. eCollection 2014.

9.

The responses of neural stem cells to the level of GSK-3 depend on the tissue of origin.

Holowacz T, Alexson TO, Coles BL, Doble BW, Kelly KF, Woodgett JR, Van Der Kooy D.

Biol Open. 2013 Jun 20;2(8):812-21. doi: 10.1242/bio.20131941. eCollection 2013 Aug 15.

10.

Ectopic γ-catenin expression partially mimics the effects of stabilized β-catenin on embryonic stem cell differentiation.

Mahendram S, Kelly KF, Paez-Parent S, Mahmood S, Polena E, Cooney AJ, Doble BW.

PLoS One. 2013 May 27;8(5):e65320. doi: 10.1371/journal.pone.0065320. Print 2013.

11.

Medulloblastoma stem cells: modeling tumor heterogeneity.

Manoranjan B, Venugopal C, McFarlane N, Doble BW, Dunn SE, Scheinemann K, Singh SK.

Cancer Lett. 2013 Sep 10;338(1):23-31. doi: 10.1016/j.canlet.2012.07.010. Epub 2012 Jul 14. Review.

PMID:
22796365
12.

Medulloblastoma stem cells: where development and cancer cross pathways.

Manoranjan B, Venugopal C, McFarlane N, Doble BW, Dunn SE, Scheinemann K, Singh SK.

Pediatr Res. 2012 Apr;71(4 Pt 2):516-22. doi: 10.1038/pr.2011.62. Epub 2012 Feb 8. Review.

PMID:
22430388
13.

β-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism.

Kelly KF, Ng DY, Jayakumaran G, Wood GA, Koide H, Doble BW.

Cell Stem Cell. 2011 Feb 4;8(2):214-27. doi: 10.1016/j.stem.2010.12.010.

14.

Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci.

Popkie AP, Zeidner LC, Albrecht AM, D'Ippolito A, Eckardt S, Newsom DE, Groden J, Doble BW, Aronow B, McLaughlin KJ, White P, Phiel CJ.

J Biol Chem. 2010 Dec 31;285(53):41337-47. doi: 10.1074/jbc.M110.170704. Epub 2010 Nov 3.

15.

GSK-3alpha directly regulates beta-adrenergic signaling and the response of the heart to hemodynamic stress in mice.

Zhou J, Lal H, Chen X, Shang X, Song J, Li Y, Kerkela R, Doble BW, MacAulay K, DeCaul M, Koch WJ, Farber J, Woodgett J, Gao E, Force T.

J Clin Invest. 2010 Jul;120(7):2280-91. doi: 10.1172/JCI41407.

16.

Abnormalities in brain structure and behavior in GSK-3alpha mutant mice.

Kaidanovich-Beilin O, Lipina TV, Takao K, van Eede M, Hattori S, Laliberté C, Khan M, Okamoto K, Chambers JW, Fletcher PJ, MacAulay K, Doble BW, Henkelman M, Miyakawa T, Roder J, Woodgett JR.

Mol Brain. 2009 Nov 19;2:35. doi: 10.1186/1756-6606-2-35.

17.

GSK-3 is a master regulator of neural progenitor homeostasis.

Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, Snider WD.

Nat Neurosci. 2009 Nov;12(11):1390-7. doi: 10.1038/nn.2408. Epub 2009 Oct 4.

18.

Exploring pluripotency with chemical genetics.

Doble BW, Woodgett JR.

Cell Stem Cell. 2009 Feb 6;4(2):98-100. doi: 10.1016/j.stem.2009.01.005.

19.

Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation.

Kerkela R, Kockeritz L, Macaulay K, Zhou J, Doble BW, Beahm C, Greytak S, Woulfe K, Trivedi CM, Woodgett JR, Epstein JA, Force T, Huggins GS.

J Clin Invest. 2008 Nov;118(11):3609-18. doi: 10.1172/JCI36245. Epub 2008 Oct 1.

20.

Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action.

Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR.

Mol Cell Biol. 2008 Oct;28(20):6314-28. doi: 10.1128/MCB.00763-08. Epub 2008 Aug 11.

21.

Genetic deficiency of glycogen synthase kinase-3beta corrects diabetes in mouse models of insulin resistance.

Tanabe K, Liu Z, Patel S, Doble BW, Li L, Cras-Méneur C, Martinez SC, Welling CM, White MF, Bernal-Mizrachi E, Woodgett JR, Permutt MA.

PLoS Biol. 2008 Feb;6(2):e37. doi: 10.1371/journal.pbio.0060037.

22.

Glycogen synthase kinase 3alpha-specific regulation of murine hepatic glycogen metabolism.

MacAulay K, Doble BW, Patel S, Hansotia T, Sinclair EM, Drucker DJ, Nagy A, Woodgett JR.

Cell Metab. 2007 Oct;6(4):329-37.

23.

Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions.

Doble BW, Woodgett JR.

Cells Tissues Organs. 2007;185(1-3):73-84. Review.

PMID:
17587811
24.
25.

Inhibition of TGFbeta signaling potentiates the FGF-2-induced stimulation of cardiomyocyte DNA synthesis.

Sheikh F, Hirst CJ, Jin Y, Bock ME, Fandrich RR, Nickel BE, Doble BW, Kardami E, Cattini PA.

Cardiovasc Res. 2004 Dec 1;64(3):516-25.

PMID:
15537505
26.

Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes.

Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E.

J Cell Sci. 2004 Jan 26;117(Pt 3):507-14.

27.

PKC-dependent phosphorylation may regulate the ability of connexin43 to inhibit DNA synthesis.

Kardami E, Banerji S, Doble BW, Dang X, Fandrich RR, Jin Y, Cattini PA.

Cell Commun Adhes. 2003 Jul-Dec;10(4-6):293-7.

PMID:
14681031
28.

The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth.

Dang X, Doble BW, Kardami E.

Mol Cell Biochem. 2003 Jan;242(1-2):35-8.

PMID:
12619863
29.

GSK-3: tricks of the trade for a multi-tasking kinase.

Doble BW, Woodgett JR.

J Cell Sci. 2003 Apr 1;116(Pt 7):1175-86. Review.

30.

Protein kinase C-epsilon mediates phorbol ester-induced phosphorylation of connexin-43.

Doble BW, Ping P, Fandrich RR, Cattini PA, Kardami E.

Cell Commun Adhes. 2001;8(4-6):253-6.

PMID:
12064598
31.

Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C.

Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, Cattini PA, Dixon IM, Kardami E.

Am J Physiol Heart Circ Physiol. 2002 Mar;282(3):H1071-80.

32.

CUG-initiated FGF-2 induces chromatin compaction in cultured cardiac myocytes and in vitro.

Sun G, Doble BW, Sun JM, Fandrich RR, Florkiewicz R, Kirshenbaum L, Davie JR, Cattini PA, Kardami E.

J Cell Physiol. 2001 Mar;186(3):457-67.

PMID:
11169985
33.

The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation.

Doble BW, Ping P, Kardami E.

Circ Res. 2000 Feb 18;86(3):293-301.

PMID:
10679481
34.

FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium-independent protein kinase C.

Padua RR, Merle PL, Doble BW, Yu CH, Zahradka P, Pierce GN, Panagia V, Kardami E.

J Mol Cell Cardiol. 1998 Dec;30(12):2695-709.

PMID:
9990540
35.

Cardiomyocyte gap junctions: a target of growth-promoting signaling.

Kardami E, Doble BW.

Trends Cardiovasc Med. 1998 May;8(4):180-7. doi: 10.1016/S1050-1738(98)00007-3.

PMID:
21235931
36.

Selective monoclonal antibody recognition and cellular localization of an unphosphorylated form of connexin43.

Nagy JI, Li WE, Roy C, Doble BW, Gilchrist JS, Kardami E, Hertzberg EL.

Exp Cell Res. 1997 Oct 10;236(1):127-36.

PMID:
9344592
37.
38.

Regulation of basic fibroblast growth factor (bFGF) and FGF receptors in the heart.

Kardami E, Liu L, Pasumarthi SK, Doble BW, Cattini PA.

Ann N Y Acad Sci. 1995 Mar 27;752:353-69. Review. No abstract available.

PMID:
7755280
39.
42.

Biochemical and ultrastructural evidence for the association of basic fibroblast growth factor with cardiac gap junctions.

Kardami E, Stoski RM, Doble BW, Yamamoto T, Hertzberg EL, Nagy JI.

J Biol Chem. 1991 Oct 15;266(29):19551-7.

43.

Basic fibroblast growth factor in cultured cardiac myocytes.

Kardami E, Liu L, Doble BW.

Ann N Y Acad Sci. 1991;638:244-55.

PMID:
1785804
44.

Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases.

Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E.

Biochem Biophys Res Commun. 1990 Dec 31;173(3):1116-22.

PMID:
2268315
45.

Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli.

Triggs-Raine BL, Doble BW, Mulvey MR, Sorby PA, Loewen PC.

J Bacteriol. 1988 Sep;170(9):4415-9.

Supplemental Content

Loading ...
Support Center