Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 122

1.

Translational recoding signals: Expanding the synthetic biology toolbox.

Dinman JD.

J Biol Chem. 2019 May 10;294(19):7537-7545. doi: 10.1074/jbc.REV119.006348. Epub 2019 Apr 1. Review.

2.

Scaring Ribosomes Shiftless.

Dinman JD.

Biochemistry. 2019 Apr 9;58(14):1831-1832. doi: 10.1021/acs.biochem.9b00162. Epub 2019 Mar 27. No abstract available.

PMID:
30915840
3.

Still Searching for Specialized Ribosomes.

Haag ES, Dinman JD.

Dev Cell. 2019 Mar 25;48(6):744-746. doi: 10.1016/j.devcel.2019.03.005.

PMID:
30913404
4.

Ribosomal Lesions Promote Oncogenic Mutagenesis.

Sulima SO, Kampen KR, Vereecke S, Pepe D, Fancello L, Verbeeck J, Dinman JD, De Keersmaecker K.

Cancer Res. 2019 Jan 15;79(2):320-327. doi: 10.1158/0008-5472.CAN-18-1987. Epub 2018 Nov 27.

PMID:
30482776
5.

Shapeshifting RNAs guide innate immunity.

Dinman JD.

J Biol Chem. 2018 Oct 12;293(41):16125-16126. doi: 10.1074/jbc.H118.005799.

6.

Functional and structural characterization of the chikungunya virus translational recoding signals.

Kendra JA, Advani VM, Chen B, Briggs JW, Zhu J, Bress HJ, Pathy SM, Dinman JD.

J Biol Chem. 2018 Nov 9;293(45):17536-17545. doi: 10.1074/jbc.RA118.005606. Epub 2018 Sep 21.

PMID:
30242123
7.

Translation Elongation and Recoding in Eukaryotes.

Dever TE, Dinman JD, Green R.

Cold Spring Harb Perspect Biol. 2018 Aug 1;10(8). pii: a032649. doi: 10.1101/cshperspect.a032649. Review.

8.

CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding.

Chen B, Longhini AP, Nußbaumer F, Kreutz C, Dinman JD, Dayie TK.

Chemistry. 2018 Apr 11;24(21):5462-5468. doi: 10.1002/chem.201705948. Epub 2018 Mar 25.

PMID:
29412477
9.

Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus.

Briggs JW, Ren L, Chakrabarti KR, Tsai YC, Weissman AM, Hansen RJ, Gustafson DL, Khan YA, Dinman JD, Khanna C.

PLoS One. 2017 Sep 19;12(9):e0185089. doi: 10.1371/journal.pone.0185089. eCollection 2017.

10.

How Ribosomes Translate Cancer.

Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD.

Cancer Discov. 2017 Oct;7(10):1069-1087. doi: 10.1158/2159-8290.CD-17-0550. Epub 2017 Sep 18. Review.

11.

The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.

Girardi T, Vereecke S, Sulima SO, Khan Y, Fancello L, Briggs JW, Schwab C, de Beeck JO, Verbeeck J, Royaert J, Geerdens E, Vicente C, Bornschein S, Harrison CJ, Meijerink JP, Cools J, Dinman JD, Kampen KR, De Keersmaecker K.

Leukemia. 2018 Mar;32(3):809-819. doi: 10.1038/leu.2017.225. Epub 2017 Jul 24.

12.

Subtractional Heterogeneity: A Crucial Step toward Defining Specialized Ribosomes.

Briggs JW, Dinman JD.

Mol Cell. 2017 Jul 6;67(1):3-4. doi: 10.1016/j.molcel.2017.06.022.

13.

Tracking fluctuation hotspots on the yeast ribosome through the elongation cycle.

Gulay SP, Bista S, Varshney A, Kirmizialtin S, Sanbonmatsu KY, Dinman JD.

Nucleic Acids Res. 2017 May 5;45(8):4958-4971. doi: 10.1093/nar/gkx112.

14.

A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism.

Paolini NA, Attwood M, Sondalle SB, Vieira CMDS, van Adrichem AM, di Summa FM, O'Donohue MF, Gleizes PE, Rachuri S, Briggs JW, Fischer R, Ratcliffe PJ, Wlodarski MW, Houtkooper RH, von Lindern M, Kuijpers TW, Dinman JD, Baserga SJ, Cockman ME, MacInnes AW.

Am J Hum Genet. 2017 Mar 2;100(3):506-522. doi: 10.1016/j.ajhg.2017.01.034.

15.

Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene.

Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P, Jones JE, Khan Y, Briggs J, Dinman JD, Vázquez-Laslop N, Mankin AS.

Mol Cell. 2017 Jan 19;65(2):207-219. doi: 10.1016/j.molcel.2016.12.008.

16.

Ablation of Programmed -1 Ribosomal Frameshifting in Venezuelan Equine Encephalitis Virus Results in Attenuated Neuropathogenicity.

Kendra JA, de la Fuente C, Brahms A, Woodson C, Bell TM, Chen B, Khan YA, Jacobs JL, Kehn-Hall K, Dinman JD.

J Virol. 2017 Jan 18;91(3). pii: e01766-16. doi: 10.1128/JVI.01766-16. Print 2017 Feb 1.

17.

Structural and Functional Characterization of Programmed Ribosomal Frameshift Signals in West Nile Virus Strains Reveals High Structural Plasticity Among cis-Acting RNA Elements.

Moomau C, Musalgaonkar S, Khan YA, Jones JE, Dinman JD.

J Biol Chem. 2016 Jul 22;291(30):15788-95. doi: 10.1074/jbc.M116.735613. Epub 2016 May 23.

18.

The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome.

Kisly I, Gulay SP, Mäeorg U, Dinman JD, Remme J, Tamm T.

J Mol Biol. 2016 May 22;428(10 Pt B):2203-16. doi: 10.1016/j.jmb.2016.03.023. Epub 2016 Mar 30.

19.

Crystal Structures of the uL3 Mutant Ribosome: Illustration of the Importance of Ribosomal Proteins for Translation Efficiency.

Mailliot J, Garreau de Loubresse N, Yusupova G, Meskauskas A, Dinman JD, Yusupov M.

J Mol Biol. 2016 May 22;428(10 Pt B):2195-202. doi: 10.1016/j.jmb.2016.02.013. Epub 2016 Feb 18.

20.

Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function.

Bowen AM, Musalgaonkar S, Moomau CA, Gulay SP, Mirvis M, Dinman JD.

Translation (Austin). 2015 Nov 18;3(2):e1117703. doi: 10.1080/21690731.2015.1117703. eCollection 2015 Jul-Dec.

21.

Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1.

Baer A, Lundberg L, Swales D, Waybright N, Pinkham C, Dinman JD, Jacobs JL, Kehn-Hall K.

J Virol. 2016 Jan 20;90(7):3558-72. doi: 10.1128/JVI.02827-15.

22.

Pathways to Specialized Ribosomes: The Brussels Lecture.

Dinman JD.

J Mol Biol. 2016 May 22;428(10 Pt B):2186-94. doi: 10.1016/j.jmb.2015.12.021. Epub 2016 Jan 4. Review.

23.

Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression.

Advani VM, Dinman JD.

Bioessays. 2016 Jan;38(1):21-6. doi: 10.1002/bies.201500131. Epub 2015 Dec 12. Review.

24.

Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics.

Belew AT, Dinman JD.

Cell Cycle. 2015;14(2):172-8. doi: 10.4161/15384101.2014.989123.

25.

Ribosomopathies and the paradox of cellular hypo- to hyperproliferation.

De Keersmaecker K, Sulima SO, Dinman JD.

Blood. 2015 Feb 26;125(9):1377-82. doi: 10.1182/blood-2014-10-569616. Epub 2015 Jan 9.

26.

Trajectories of the ribosome as a Brownian nanomachine.

Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A.

Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17492-7. doi: 10.1073/pnas.1419276111. Epub 2014 Nov 24.

27.

Molecular biology: Entry signals control development.

Dinman JD.

Nature. 2015 Jan 1;517(7532):24-5. doi: 10.1038/nature14069. Epub 2014 Nov 19. No abstract available.

28.

Ribosomes in the balance: structural equilibrium ensures translational fidelity and proper gene expression.

Musalgaonkar S, Moomau CA, Dinman JD.

Nucleic Acids Res. 2014 Dec 1;42(21):13384-92. doi: 10.1093/nar/gku1020. Epub 2014 Nov 11.

29.

Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway.

Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro BA, Dinman JD.

Nature. 2014 Aug 21;512(7514):265-9. doi: 10.1038/nature13429. Epub 2014 Jul 9.

30.

Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis.

Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW, Dinman JD.

Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5640-5. doi: 10.1073/pnas.1400247111. Epub 2014 Mar 31.

31.

Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway.

Advani VM, Belew AT, Dinman JD.

Translation (Austin). 2013 Apr 1;1(1):e24418. doi: 10.4161/trla.24418.

32.

A new system for naming ribosomal proteins.

Ban N, Beckmann R, Cate JH, Dinman JD, Dragon F, Ellis SR, Lafontaine DL, Lindahl L, Liljas A, Lipton JM, McAlear MA, Moore PB, Noller HF, Ortega J, Panse VG, Ramakrishnan V, Spahn CM, Steitz TA, Tchorzewski M, Tollervey D, Warren AJ, Williamson JR, Wilson D, Yonath A, Yusupov M.

Curr Opin Struct Biol. 2014 Feb;24:165-9. doi: 10.1016/j.sbi.2014.01.002. Epub 2014 Feb 10. Review.

33.

Single-molecule measurements of the CCR5 mRNA unfolding pathways.

de Messieres M, Chang JC, Belew AT, Meskauskas A, Dinman JD, La Porta A.

Biophys J. 2014 Jan 7;106(1):244-52. doi: 10.1016/j.bpj.2013.09.036.

34.

Eukaryotic rpL10 drives ribosomal rotation.

Sulima SO, Gülay SP, Anjos M, Patchett S, Meskauskas A, Johnson AW, Dinman JD.

Nucleic Acids Res. 2014 Feb;42(3):2049-63. doi: 10.1093/nar/gkt1107. Epub 2013 Nov 8.

35.

The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin.

Gao F, Gulay SP, Kasprzak W, Dinman JD, Shapiro BA, Simon AE.

J Virol. 2013 Nov;87(22):11987-2002. doi: 10.1128/JVI.02005-13. Epub 2013 Aug 28.

36.

Altering SARS coronavirus frameshift efficiency affects genomic and subgenomic RNA production.

Plant EP, Sims AC, Baric RS, Dinman JD, Taylor DR.

Viruses. 2013 Jan 18;5(1):279-94. doi: 10.3390/v5010279.

37.

RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus.

Ishimaru D, Plant EP, Sims AC, Yount BL Jr, Roth BM, Eldho NV, Pérez-Alvarado GC, Armbruster DW, Baric RS, Dinman JD, Taylor DR, Hennig M.

Nucleic Acids Res. 2013 Feb 1;41(4):2594-608. doi: 10.1093/nar/gks1361. Epub 2012 Dec 28.

38.

Mechanisms and implications of programmed translational frameshifting.

Dinman JD.

Wiley Interdiscip Rev RNA. 2012 Sep-Oct;3(5):661-73. doi: 10.1002/wrna.1126. Epub 2012 Jun 19. Review.

39.

Control of gene expression by translational recoding.

Dinman JD.

Adv Protein Chem Struct Biol. 2012;86:129-49. doi: 10.1016/B978-0-12-386497-0.00004-9. Review.

PMID:
22243583
40.

rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells.

Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD.

Mol Cell. 2011 Nov 18;44(4):660-6. doi: 10.1016/j.molcel.2011.09.017.

41.

Chromatographic purification of highly active yeast ribosomes.

Meskauskas A, Leshin JA, Dinman JD.

J Vis Exp. 2011 Oct 24;(56). pii: 3214. doi: 10.3791/3214.

42.

Evolution of a helper virus-derived, ribosome binding translational enhancer in an untranslated satellite RNA of Turnip crinkle virus.

Guo R, Meskauskas A, Dinman JD, Simon AE.

Virology. 2011 Oct 10;419(1):10-6. doi: 10.1016/j.virol.2011.07.019.

43.

An extensive network of information flow through the B1b/c intersubunit bridge of the yeast ribosome.

Rhodin MH, Dinman JD.

PLoS One. 2011;6(5):e20048. doi: 10.1371/journal.pone.0020048. Epub 2011 May 19.

44.

A rapid, inexpensive yeast-based dual-fluorescence assay of programmed--1 ribosomal frameshifting for high-throughput screening.

Rakauskaite R, Liao PY, Rhodin MH, Lee K, Dinman JD.

Nucleic Acids Res. 2011 Aug;39(14):e97. doi: 10.1093/nar/gkr382. Epub 2011 May 20.

45.

The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity.

Rhodin MH, Rakauskaitė R, Dinman JD.

Mol Genet Genomics. 2011 Jun;285(6):505-16. doi: 10.1007/s00438-011-0623-2. Epub 2011 Apr 26.

46.

Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes.

Rakauskaite R, Dinman JD.

RNA. 2011 May;17(5):855-64. doi: 10.1261/rna.2593211. Epub 2011 Mar 25.

47.

Ribosome binding to a 5' translational enhancer is altered in the presence of the 3' untranslated region in cap-independent translation of turnip crinkle virus.

Stupina VA, Yuan X, Meskauskas A, Dinman JD, Simon AE.

J Virol. 2011 May;85(10):4638-53. doi: 10.1128/JVI.00005-11. Epub 2011 Mar 9.

48.

Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

Belew AT, Advani VM, Dinman JD.

Nucleic Acids Res. 2011 Apr;39(7):2799-808. doi: 10.1093/nar/gkq1220. Epub 2010 Nov 24.

49.

The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting.

Liao PY, Choi YS, Dinman JD, Lee KH.

Nucleic Acids Res. 2011 Jan;39(1):300-12. doi: 10.1093/nar/gkq761. Epub 2010 Sep 7.

50.

A flexible loop in yeast ribosomal protein L11 coordinates P-site tRNA binding.

Rhodin MH, Dinman JD.

Nucleic Acids Res. 2010 Dec;38(22):8377-89. doi: 10.1093/nar/gkq711. Epub 2010 Aug 12.

Supplemental Content

Loading ...
Support Center