Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

Comparative xylose metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae.

Harcus D, Dignard D, Lépine G, Askew C, Raymond M, Whiteway M, Wu C.

PLoS One. 2013 Nov 13;8(11):e80733. doi: 10.1371/journal.pone.0080733. eCollection 2013.

2.

Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes.

Pierce JV, Dignard D, Whiteway M, Kumamoto CA.

Eukaryot Cell. 2013 Jan;12(1):37-49. doi: 10.1128/EC.00236-12. Epub 2012 Nov 2.

3.

Evolutionary reshaping of fungal mating pathway scaffold proteins.

Côte P, Sulea T, Dignard D, Wu C, Whiteway M.

MBio. 2011 Jan 11;2(1):e00230-10. doi: 10.1128/mBio.00230-10.

4.

Adaptations of Candida albicans for growth in the mammalian intestinal tract.

Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA.

Eukaryot Cell. 2010 Jul;9(7):1075-86. doi: 10.1128/EC.00034-10. Epub 2010 Apr 30.

5.

Heterotrimeric G-protein subunit function in Candida albicans: both the alpha and beta subunits of the pheromone response G protein are required for mating.

Dignard D, André D, Whiteway M.

Eukaryot Cell. 2008 Sep;7(9):1591-9. doi: 10.1128/EC.00077-08. Epub 2008 Jul 25.

6.

Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes.

van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, Cuomo C, Berriman M, Scherer S, Magee BB, Whiteway M, Chibana H, Nantel A, Magee PT.

Genome Biol. 2007;8(4):R52.

7.

In vivo and in vitro anaerobic mating in Candida albicans.

Dumitru R, Navarathna DH, Semighini CP, Elowsky CG, Dumitru RV, Dignard D, Whiteway M, Atkin AL, Nickerson KW.

Eukaryot Cell. 2007 Mar;6(3):465-72. Epub 2007 Jan 26.

8.

Identification and characterization of MFA1, the gene encoding Candida albicans a-factor pheromone.

Dignard D, El-Naggar AL, Logue ME, Butler G, Whiteway M.

Eukaryot Cell. 2007 Mar;6(3):487-94. Epub 2007 Jan 5.

9.
10.

A human-curated annotation of the Candida albicans genome.

Braun BR, van Het Hoog M, d'Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NA, Hoyer LL, Köhler G, Morschhäuser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A.

PLoS Genet. 2005 Jul;1(1):36-57. Epub 2005 Jun 17.

11.

MFalpha1, the gene encoding the alpha mating pheromone of Candida albicans.

Panwar SL, Legrand M, Dignard D, Whiteway M, Magee PT.

Eukaryot Cell. 2003 Dec;2(6):1350-60.

12.

CDC42 is required for polarized growth in human pathogen Candida albicans.

Ushinsky SC, Harcus D, Ash J, Dignard D, Marcil A, Morchhauser J, Thomas DY, Whiteway M, Leberer E.

Eukaryot Cell. 2002 Feb;1(1):95-104.

13.

Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition.

Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M.

Mol Biol Cell. 2002 Oct;13(10):3452-65.

14.

Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans.

Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schröppel K.

Mol Microbiol. 2001 Nov;42(3):673-87.

15.

Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans.

Rocha CR, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E.

Mol Biol Cell. 2001 Nov;12(11):3631-43.

16.

Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast.

Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M.

EMBO Rep. 2001 May;2(5):423-30.

17.

A conserved Gbeta binding (GBB) sequence motif in Ste20p/PAK family protein kinases.

Leberer E, Dignard D, Thomas DY, Leeuw T.

Biol Chem. 2000 May-Jun;381(5-6):427-31. Review.

PMID:
10937873
18.

Molecular cloning of the CRM1 gene from Candida albicans.

Raymond M, Dignard D, Alarco AM, Clark KL, Weber S, Whiteway M, Leberer E, Thomas DY.

Yeast. 2000 Apr;16(6):531-8.

19.

Cloning and characterization of mammalian UDP-glucose glycoprotein: glucosyltransferase and the development of a specific substrate for this enzyme.

Tessier DC, Dignard D, Zapun A, Radominska-Pandya A, Parodi AJ, Bergeron JJ, Thomas DY.

Glycobiology. 2000 Apr;10(4):403-12.

PMID:
10764828
20.

A Ste6p/P-glycoprotein homologue from the asexual yeast Candida albicans transports the a-factor mating pheromone in Saccharomyces cerevisiae.

Raymond M, Dignard D, Alarco AM, Mainville N, Magee BB, Thomas DY.

Mol Microbiol. 1998 Feb;27(3):587-98.

21.

Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans.

Csank C, Makris C, Meloche S, Schröppel K, Röllinghoff M, Dignard D, Thomas DY, Whiteway M.

Mol Biol Cell. 1997 Dec;8(12):2539-51.

22.

Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p.

Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY.

Curr Biol. 1997 Aug 1;7(8):539-46.

23.

Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.

Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmidt A, Gow NA, Brown AJ, Thomas DY.

Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13217-22.

24.

Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans.

Clark KL, Feldmann PJ, Dignard D, Larocque R, Brown AJ, Lee MG, Thomas DY, Whiteway M.

Mol Gen Genet. 1995 Dec 20;249(6):609-21.

PMID:
8544826
25.
26.
27.

Genetic identification of residues involved in association of alpha and beta G-protein subunits.

Whiteway M, Clark KL, Leberer E, Dignard D, Thomas DY.

Mol Cell Biol. 1994 May;14(5):3223-9.

28.

Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1.

Leberer E, Dignard D, Harcus D, Hougan L, Whiteway M, Thomas DY.

Mol Gen Genet. 1993 Nov;241(3-4):241-54.

PMID:
8246877
29.

Interactions among the subunits of the G protein involved in Saccharomyces cerevisiae mating.

Clark KL, Dignard D, Thomas DY, Whiteway M.

Mol Cell Biol. 1993 Jan;13(1):1-8.

30.
31.
33.

Mutagenesis of Ste18, a putative G gamma subunit in the Saccharomyces cerevisiae pheromone response pathway.

Whiteway M, Dignard D, Thomas DY.

Biochem Cell Biol. 1992 Oct-Nov;70(10-11):1230-7.

PMID:
1297344
34.

Screening and identification of a gene, PSE-1, that affects protein secretion in Saccharomyces cerevisiae.

Chow TY, Ash JJ, Dignard D, Thomas DY.

J Cell Sci. 1992 Mar;101 ( Pt 3):709-19.

35.

SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane.

Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ 2nd, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ.

J Biol Chem. 1991 Oct 15;266(29):19599-610.

36.

Expression in yeast of a cDNA copy of the K2 killer toxin gene.

Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY.

Mol Gen Genet. 1991 May;227(1):127-36.

PMID:
2046653
37.

The yeast KEX-2-processing endoprotease is active in the Golgi apparatus of transfected NIH 3T3 fibroblasts.

Germain D, Zollinger L, Racine C, Gossard F, Dignard D, Thomas DY, Crine P, Boileau G.

Mol Endocrinol. 1990 Oct;4(10):1572-9.

PMID:
2284001
38.

Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acyl-coenzyme A oxidase.

Dmochowska A, Dignard D, Maleszka R, Thomas DY.

Gene. 1990 Apr 16;88(2):247-52.

PMID:
2189786
39.

Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3.

McGavin MJ, Forsberg CW, Crosby B, Bell AW, Dignard D, Thomas DY.

J Bacteriol. 1989 Oct;171(10):5587-95.

40.
41.

The STE4 and STE18 genes of yeast encode potential beta and gamma subunits of the mating factor receptor-coupled G protein.

Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O'Hara P, MacKay VL.

Cell. 1989 Feb 10;56(3):467-77.

PMID:
2536595
42.

Function of the STE4 and STE18 genes in mating pheromone signal transduction in Saccharomyces cerevisiae.

Whiteway M, Hougan L, Dignard D, Bell L, Saari G, Grant F, O'Hara P, MacKay VL, Thomas DY.

Cold Spring Harb Symp Quant Biol. 1988;53 Pt 2:585-90. No abstract available.

PMID:
3151178
43.
44.

A family of yeast expression vectors containing the phage f1 intergenic region.

Vernet T, Dignard D, Thomas DY.

Gene. 1987;52(2-3):225-33.

PMID:
3038686
45.

The structure of HSAG-1, a middle repetitive genetic element which elicits a leukemia-related cellular surface antigen.

Chamberlain JW, Henderson G, Chang MW, Lam T, Dignard D, Ling V, Price GB, Stanners CP.

Nucleic Acids Res. 1986 Apr 25;14(8):3409-24.

Supplemental Content

Loading ...
Support Center