Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53

1.

Interdependency of respiratory metabolism and phenazine-associated physiology in Pseudomonas aeruginosa PA14.

Jo J, Price-Whelan A, Cornell WC, Dietrich LEP.

J Bacteriol. 2019 Nov 25. pii: JB.00700-19. doi: 10.1128/JB.00700-19. [Epub ahead of print]

PMID:
31767778
2.

Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms.

Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP.

Nat Commun. 2019 Feb 15;10(1):762. doi: 10.1038/s41467-019-08733-w.

3.

The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding.

Lin YC, Cornell WC, Jo J, Price-Whelan A, Dietrich LEP.

MBio. 2018 Sep 11;9(5). pii: e00961-18. doi: 10.1128/mBio.00961-18.

4.

Paraffin Embedding and Thin Sectioning of Microbial Colony Biofilms for Microscopic Analysis.

Cornell WC, Morgan CJ, Koyama L, Sakhtah H, Mansfield JH, Dietrich LEP.

J Vis Exp. 2018 Mar 23;(133). doi: 10.3791/57196.

5.

Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.

Sporer AJ, Beierschmitt C, Bendebury A, Zink KE, Price-Whelan A, Buzzeo MC, Sanchez LM, Dietrich LEP.

Microbiology. 2018 May;164(5):790-800. doi: 10.1099/mic.0.000657. Epub 2018 Apr 9.

6.

Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.

Lin YC, Sekedat MD, Cornell WC, Silva GM, Okegbe C, Price-Whelan A, Vogel C, Dietrich LEP.

J Bacteriol. 2018 Apr 9;200(9). pii: e00031-18. doi: 10.1128/JB.00031-18. Print 2018 May 1.

7.

An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence.

Jo J, Cortez KL, Cornell WC, Price-Whelan A, Dietrich LE.

Elife. 2017 Nov 21;6. pii: e30205. doi: 10.7554/eLife.30205.

8.

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

Yan J, Deforet M, Boyle KE, Rahman R, Liang R, Okegbe C, Dietrich LEP, Qiu W, Xavier JB.

PLoS Comput Biol. 2017 Aug 2;13(8):e1005677. doi: 10.1371/journal.pcbi.1005677. eCollection 2017 Aug.

9.

Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms.

Fong JC, Rogers A, Michael AK, Parsley NC, Cornell WC, Lin YC, Singh PK, Hartmann R, Drescher K, Vinogradov E, Dietrich LE, Partch CL, Yildiz FH.

Elife. 2017 Aug 1;6. pii: e26163. doi: 10.7554/eLife.26163.

10.

Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer.

Maderbocus R, Fields BL, Hamilton K, Luo S, Tran TH, Dietrich LEP, Tong L.

Nat Commun. 2017 Jul 31;8(1):160. doi: 10.1038/s41467-017-00233-z.

11.

Bifunctionality of a biofilm matrix protein controlled by redox state.

Arnaouteli S, Ferreira AS, Schor M, Morris RJ, Bromley KM, Jo J, Cortez KL, Sukhodub T, Prescott AR, Dietrich LEP, MacPhee CE, Stanley-Wall NR.

Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6184-E6191. doi: 10.1073/pnas.1707687114. Epub 2017 Jul 11.

12.

Redox-Based Regulation of Bacterial Development and Behavior.

Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LEP.

Annu Rev Biochem. 2017 Jun 20;86:777-797. doi: 10.1146/annurev-biochem-061516-044453. Review.

PMID:
28654321
13.

Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP.

Okegbe C, Fields BL, Cole SJ, Beierschmitt C, Morgan CJ, Price-Whelan A, Stewart RC, Lee VT, Dietrich LEP.

Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5236-E5245. doi: 10.1073/pnas.1700264114. Epub 2017 Jun 12.

14.

A distinct holoenzyme organization for two-subunit pyruvate carboxylase.

Choi PH, Jo J, Lin YC, Lin MH, Chou CY, Dietrich LEP, Tong L.

Nat Commun. 2016 Oct 6;7:12713. doi: 10.1038/ncomms12713.

15.

The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.

Sakhtah H, Koyama L, Zhang Y, Morales DK, Fields BL, Price-Whelan A, Hogan DA, Shepard K, Dietrich LE.

Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3538-47. doi: 10.1073/pnas.1600424113. Epub 2016 Jun 6.

16.

Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms.

Bellin DL, Sakhtah H, Zhang Y, Price-Whelan A, Dietrich LE, Shepard KL.

Nat Commun. 2016 Jan 27;7:10535. doi: 10.1038/ncomms10535.

17.

Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

Madsen JS, Lin YC, Squyres GR, Price-Whelan A, de Santiago Torio A, Song A, Cornell WC, Sørensen SJ, Xavier JB, Dietrich LE.

Appl Environ Microbiol. 2015 Dec;81(24):8414-26. doi: 10.1128/AEM.02628-15. Epub 2015 Oct 2.

18.

Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development.

Hölscher T, Bartels B, Lin YC, Gallegos-Monterrosa R, Price-Whelan A, Kolter R, Dietrich LEP, Kovács ÁT.

J Mol Biol. 2015 Nov 20;427(23):3695-3708. doi: 10.1016/j.jmb.2015.06.014. Epub 2015 Jun 26.

19.

Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase.

Tran TH, Hsiao YS, Jo J, Chou CY, Dietrich LE, Walz T, Tong L.

Nature. 2015 Feb 5;518(7537):120-4. doi: 10.1038/nature13912. Epub 2014 Nov 10.

20.

Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, Ha DG, Willger SD, O'Toole GA, Harwood CS, Dietrich LE, Hogan DA.

PLoS Pathog. 2014 Oct 23;10(10):e1004480. doi: 10.1371/journal.ppat.1004480. eCollection 2014 Oct.

21.

An aerobic exercise: defining the roles of Pseudomonas aeruginosa terminal oxidases.

Jo J, Price-Whelan A, Dietrich LE.

J Bacteriol. 2014 Dec;196(24):4203-5. doi: 10.1128/JB.02336-14. Epub 2014 Sep 29.

22.

Redox-driven regulation of microbial community morphogenesis.

Okegbe C, Price-Whelan A, Dietrich LE.

Curr Opin Microbiol. 2014 Apr;18:39-45. doi: 10.1016/j.mib.2014.01.006. Epub 2014 Mar 5. Review.

23.

Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

Bellin DL, Sakhtah H, Rosenstein JK, Levine PM, Thimot J, Emmett K, Dietrich LE, Shepard KL.

Nat Commun. 2014;5:3256. doi: 10.1038/ncomms4256.

24.

Morphological optimization for access to dual oxidants in biofilms.

Kempes CP, Okegbe C, Mears-Clarke Z, Follows MJ, Dietrich LE.

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):208-13. doi: 10.1073/pnas.1315521110. Epub 2013 Dec 12.

25.

Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria.

van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Déziel É, Dietrich LE, Xavier JB.

Cell Rep. 2013 Aug 29;4(4):697-708. doi: 10.1016/j.celrep.2013.07.026. Epub 2013 Aug 15.

26.

Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA.

MBio. 2013 Jan 29;4(1):e00526-12. doi: 10.1128/mBio.00526-12.

27.

Bacterial community morphogenesis is intimately linked to the intracellular redox state.

Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK.

J Bacteriol. 2013 Apr;195(7):1371-80. doi: 10.1128/JB.02273-12. Epub 2013 Jan 4.

28.

Species-specific residues calibrate SoxR sensitivity to redox-active molecules.

Sheplock R, Recinos DA, Mackow N, Dietrich LE, Chander M.

Mol Microbiol. 2013 Jan;87(2):368-81. doi: 10.1111/mmi.12101. Epub 2012 Dec 4.

29.

Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.

Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, Price-Whelan A, Dietrich LE.

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19420-5. doi: 10.1073/pnas.1213901109. Epub 2012 Nov 5.

30.

The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation.

Murray TS, Okegbe C, Gao Y, Kazmierczak BI, Motterlini R, Dietrich LE, Bruscia EM.

PLoS One. 2012;7(4):e35499. doi: 10.1371/journal.pone.0035499. Epub 2012 Apr 26.

31.

Redox eustress: roles for redox-active metabolites in bacterial signaling and behavior.

Okegbe C, Sakhtah H, Sekedat MD, Price-Whelan A, Dietrich LE.

Antioxid Redox Signal. 2012 Apr 1;16(7):658-67. doi: 10.1089/ars.2011.4249. Epub 2011 Nov 2. Review.

PMID:
21883044
32.

Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a.

D'aes J, Hua GK, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LE, Thomashow LS, Mavrodi DV, Höfte M.

Phytopathology. 2011 Aug;101(8):996-1004. doi: 10.1094/PHYTO-11-10-0315.

33.

A shared mechanism of SoxR activation by redox-cycling compounds.

Dietrich LE, Kiley PJ.

Mol Microbiol. 2011 Mar;79(5):1119-22. doi: 10.1111/j.1365-2958.2011.07552.x. Epub 2011 Jan 31.

34.

Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales.

Ramos I, Dietrich LE, Price-Whelan A, Newman DK.

Res Microbiol. 2010 Apr;161(3):187-91. doi: 10.1016/j.resmic.2010.01.003. Epub 2010 Feb 1.

35.

Redox-active antibiotics control gene expression and community behavior in divergent bacteria.

Dietrich LE, Teal TK, Price-Whelan A, Newman DK.

Science. 2008 Aug 29;321(5893):1203-6. doi: 10.1126/science.1160619.

36.

DNA binding shifts the redox potential of the transcription factor SoxR.

Gorodetsky AA, Dietrich LE, Lee PE, Demple B, Newman DK, Barton JK.

Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3684-9. doi: 10.1073/pnas.0800093105. Epub 2008 Mar 3.

37.

Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14.

Price-Whelan A, Dietrich LE, Newman DK.

J Bacteriol. 2007 Sep;189(17):6372-81. Epub 2007 May 25.

38.

The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa.

Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK.

Mol Microbiol. 2006 Sep;61(5):1308-21.

39.

The co-evolution of life and Earth.

Dietrich LE, Tice MM, Newman DK.

Curr Biol. 2006 Jun 6;16(11):R395-400. No abstract available. Erratum in: Curr Biol. 2006 Aug 8;16(15):1579.

40.

Palmitoylation determines the function of Vac8 at the yeast vacuole.

Subramanian K, Dietrich LE, Hou H, LaGrassa TJ, Meiringer CT, Ungermann C.

J Cell Sci. 2006 Jun 15;119(Pt 12):2477-85. Epub 2006 May 23.

41.

Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics.

Price-Whelan A, Dietrich LE, Newman DK.

Nat Chem Biol. 2006 Feb;2(2):71-8. Review. Erratum in: Nat Chem Biol. 2006 Apr;2(4):221.

PMID:
16421586
42.

The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8.

Hou H, Subramanian K, LaGrassa TJ, Markgraf D, Dietrich LE, Urban J, Decker N, Ungermann C.

Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17366-71. Epub 2005 Nov 21.

43.

The SNARE Ykt6 is released from yeast vacuoles during an early stage of fusion.

Dietrich LE, Peplowska K, LaGrassa TJ, Hou H, Rohde J, Ungermann C.

EMBO Rep. 2005 Mar;6(3):245-50.

44.

ATP-independent control of Vac8 palmitoylation by a SNARE subcomplex on yeast vacuoles.

Dietrich LE, LaGrassa TJ, Rohde J, Cristodero M, Meiringer CT, Ungermann C.

J Biol Chem. 2005 Apr 15;280(15):15348-55. Epub 2005 Feb 8.

45.

Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators.

Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D'Esposito M, Galli T, Filippini F.

Trends Biochem Sci. 2004 Dec;29(12):682-8. Review.

PMID:
15544955
46.

On the mechanism of protein palmitoylation.

Dietrich LE, Ungermann C.

EMBO Rep. 2004 Nov;5(11):1053-7. Review.

47.

The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion.

Dietrich LE, Gurezka R, Veit M, Ungermann C.

EMBO J. 2004 Jan 14;23(1):45-53. Epub 2003 Dec 11.

48.

Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins.

Dietrich LE, Boeddinghaus C, LaGrassa TJ, Ungermann C.

Biochim Biophys Acta. 2003 Aug 18;1641(2-3):111-9. Review.

49.

Biochemical characterization of the vacuolar palmitoyl acyltransferase.

Veit M, Dietrich LE, Ungermann C.

FEBS Lett. 2003 Apr 10;540(1-3):101-5.

50.

CHEMOTHERAPEUTIC DESTRUCTION OF PULMONARY TISSUE: EXPERIMENTAL CHEMICAL LOBECTOMY AND PNEUMONECTOMY.

TOCKER AM, TOCKER LR, DIETRICH LE Jr, SCHNITZLER C, GIVNER D.

J Int Coll Surg. 1964 Nov;42:466-76. No abstract available.

PMID:
14210808

Supplemental Content

Loading ...
Support Center