Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 70

1.

Remodeling of Chlamydomonas metabolism using synthetic inducers results in lipid storage during growth.

Wase N, Tu B, Rasineni GK, Cerny R, Grove R, Adamec J, Black PN, DiRusso CC.

Plant Physiol. 2019 Sep 9. pii: pp.00758.2019. doi: 10.1104/pp.19.00758. [Epub ahead of print]

2.

Long-chain omega-3 polyunsaturated fatty acids decrease mammary tumor growth, multiorgan metastasis and enhance survival.

Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, Black PN, DiRusso CC, Cook L, Talmadge JE.

Clin Exp Metastasis. 2018 Dec;35(8):797-818. doi: 10.1007/s10585-018-9941-7. Epub 2018 Oct 16.

PMID:
30327985
3.

Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgae Coccomyxa subellipsoidea C169.

Allen JW, Tevatia R, Demirel Y, DiRusso CC, Black PN.

PLoS One. 2018 Sep 27;13(9):e0204505. doi: 10.1371/journal.pone.0204505. eCollection 2018.

4.

Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, Black PN, DiRusso CC, Talmadge JE.

J Mammary Gland Biol Neoplasia. 2018 Jun;23(1-2):43-58. doi: 10.1007/s10911-018-9391-5. Epub 2018 Mar 25.

PMID:
29574638
5.

Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology.

Khadge S, Sharp JG, Thiele GM, McGuire TR, Klassen LW, Duryee MJ, Britton HC, Dafferner AJ, Beck J, Black PN, DiRusso CC, Talmadge J.

J Nutr Biochem. 2018 Feb;52:92-102. doi: 10.1016/j.jnutbio.2017.09.017. Epub 2017 Oct 4.

6.

Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.

Wase N, Tu B, Allen JW, Black PN, DiRusso CC.

Plant Physiol. 2017 Aug;174(4):2146-2165. doi: 10.1104/pp.17.00433. Epub 2017 Jun 26. Erratum in: Plant Physiol. 2017 Oct;175(2):995.

7.

Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169.

Allen JW, DiRusso CC, Black PN.

J Biol Chem. 2017 Jan 6;292(1):361-374. doi: 10.1074/jbc.M116.760843. Epub 2016 Nov 30.

8.

Fatty Acid Transport Proteins: Targeting FATP2 as a Gatekeeper Involved in the Transport of Exogenous Fatty Acids.

Black PN, Ahowesso C, Montefusco D, Saini N, DiRusso CC.

Medchemcomm. 2016 Apr 1;7(4):612-622. Epub 2016 Feb 19.

9.

Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death.

Ahowesso C, Black PN, Saini N, Montefusco D, Chekal J, Malosh C, Lindsley CW, Stauffer SR, DiRusso CC.

Biochem Pharmacol. 2015 Nov 1;98(1):167-81. doi: 10.1016/j.bcp.2015.09.004. Epub 2015 Sep 21.

10.

Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity.

Saini N, Black PN, Montefusco D, DiRusso CC.

Biochem Biophys Res Commun. 2015 Sep 25;465(3):534-41. doi: 10.1016/j.bbrc.2015.08.055. Epub 2015 Aug 15.

11.

Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.

Wase N, Black PN, Stanley BA, DiRusso CC.

J Proteome Res. 2014 Mar 7;13(3):1373-96. doi: 10.1021/pr400952z. Epub 2014 Feb 26.

PMID:
24528286
12.

Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

Melton EM, Cerny RL, DiRusso CC, Black PN.

Biochem Biophys Res Commun. 2013 Nov 1;440(4):743-8. doi: 10.1016/j.bbrc.2013.09.137. Epub 2013 Oct 8.

13.

Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol.

Melton EM, Cerny RL, Watkins PA, DiRusso CC, Black PN.

J Biol Chem. 2011 Sep 2;286(35):30670-9. doi: 10.1074/jbc.M111.226316. Epub 2011 Jul 15.

14.

Defining a relationship between dietary fatty acids and the cytochrome P450 system in a mouse model of fatty liver disease.

Gonzalez M, Sealls W, Jesch ED, Brosnan MJ, Ladunga I, Ding X, Black PN, DiRusso CC.

Physiol Genomics. 2011 Feb 11;43(3):121-35. doi: 10.1152/physiolgenomics.00209.2010. Epub 2010 Nov 23.

15.

Identification and characterization of small compound inhibitors of human FATP2.

Sandoval A, Chokshi A, Jesch ED, Black PN, Dirusso CC.

Biochem Pharmacol. 2010 Apr 1;79(7):990-9. doi: 10.1016/j.bcp.2009.11.008. Epub 2009 Nov 11. Erratum in: Biochem Pharmacol. 2012 Aug 15;84(4):580.

16.

Methods to monitor Fatty Acid transport proceeding through vectorial acylation.

Arias-Barrau E, Dirusso CC, Black PN.

Methods Mol Biol. 2009;580:233-49. doi: 10.1007/978-1-60761-325-1_13.

PMID:
19784603
17.

Targeting the fatty acid transport proteins (FATP) to understand the mechanisms linking fatty acid transport to metabolism.

Black PN, Sandoval A, Arias-Barrau E, DiRusso CC.

Immunol Endocr Metab Agents Med Chem. 2009 Sep;9(1):11-17.

18.

Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis.

Sealls W, Gonzalez M, Brosnan MJ, Black PN, DiRusso CC.

Biochim Biophys Acta. 2008 Aug;1781(8):406-14. doi: 10.1016/j.bbalip.2008.06.010. Epub 2008 Jul 4.

PMID:
18655845
19.

Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

Sandoval A, Fraisl P, Arias-Barrau E, Dirusso CC, Singer D, Sealls W, Black PN.

Arch Biochem Biophys. 2008 Sep 15;477(2):363-71. doi: 10.1016/j.abb.2008.06.010. Epub 2008 Jun 20.

PMID:
18601897
20.

Vectorial acylation: linking fatty acid transport and activation to metabolic trafficking.

Black PN, DiRusso CC.

Novartis Found Symp. 2007;286:127-38; discussion 138-41, 162-3, 196-203.

PMID:
18269179
21.

Functional domains of the fatty acid transport proteins: studies using protein chimeras.

DiRusso CC, Darwis D, Obermeyer T, Black PN.

Biochim Biophys Acta. 2008 Mar;1781(3):135-43. doi: 10.1016/j.bbalip.2008.01.002. Epub 2008 Jan 18.

22.

High-throughput screening for fatty acid uptake inhibitors in humanized yeast identifies atypical antipsychotic drugs that cause dyslipidemias.

Li H, Black PN, Chokshi A, Sandoval-Alvarez A, Vatsyayan R, Sealls W, DiRusso CC.

J Lipid Res. 2008 Jan;49(1):230-44. Epub 2007 Oct 10.

23.
24.

Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae.

Li H, Melton EM, Quackenbush S, DiRusso CC, Black PN.

Biochim Biophys Acta. 2007 Sep;1771(9):1246-53. Epub 2007 Jun 12.

25.

Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation.

Black PN, DiRusso CC.

Biochim Biophys Acta. 2007 Mar;1771(3):286-98. Epub 2006 May 16. Review. Erratum in: Biochim Biophys Acta. 2007 Jul;1771(7):911.

PMID:
16798075
26.

Direct interaction of Saccharomyces cerevisiae Faa1p with the Omi/HtrA protease orthologue Ynm3p alters lipid homeostasis.

Tong F, Black PN, Bivins L, Quackenbush S, Ctrnacta V, DiRusso CC.

Mol Genet Genomics. 2006 Apr;275(4):330-43. Epub 2006 Feb 10.

PMID:
16470384
27.

Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.

Tong F, Black PN, Coleman RA, DiRusso CC.

Arch Biochem Biophys. 2006 Mar 1;447(1):46-52. Epub 2006 Jan 23.

PMID:
16466685
29.

Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast.

DiRusso CC, Li H, Darwis D, Watkins PA, Berger J, Black PN.

J Biol Chem. 2005 Apr 29;280(17):16829-37. Epub 2005 Feb 7.

30.

Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism.

Marszalek JR, Kitidis C, Dirusso CC, Lodish HF.

J Biol Chem. 2005 Mar 18;280(11):10817-26. Epub 2005 Jan 17.

31.

A live-cell high-throughput screening assay for identification of fatty acid uptake inhibitors.

Li H, Black PN, DiRusso CC.

Anal Biochem. 2005 Jan 1;336(1):11-9.

PMID:
15582553
32.

Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system.

Dirusso CC, Black PN.

J Biol Chem. 2004 Nov 26;279(48):49563-6. Epub 2004 Aug 30. Review. No abstract available.

33.

Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P, DiRusso CC, Farber SA, Guo W, Hashimoto N, Khodiyar V, Kuypers FA, Maltais LJ, Nebert DW, Renieri A, Schaffer JE, Stahl A, Watkins PA, Vasiliou V, Yamamoto TT.

J Lipid Res. 2004 Oct;45(10):1958-61. Epub 2004 Aug 1.

34.

Rat long chain acyl-CoA synthetase 5, but not 1, 2, 3, or 4, complements Escherichia coli fadD.

Caviglia JM, Li LO, Wang S, DiRusso CC, Coleman RA, Lewin TM.

J Biol Chem. 2004 Mar 19;279(12):11163-9. Epub 2004 Jan 7.

35.

Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.

Black PN, DiRusso CC.

Microbiol Mol Biol Rev. 2003 Sep;67(3):454-72, table of contents. Review.

36.

Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex.

Zou Z, Tong F, Faergeman NJ, Børsting C, Black PN, DiRusso CC.

J Biol Chem. 2003 May 2;278(18):16414-22. Epub 2003 Feb 24.

37.

Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p.

Zou Z, DiRusso CC, Ctrnacta V, Black PN.

J Biol Chem. 2002 Aug 23;277(34):31062-71. Epub 2002 Jun 6.

39.
40.

The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR.

van Aalten DM, DiRusso CC, Knudsen J.

EMBO J. 2001 Apr 17;20(8):2041-50.

41.

Two different pathways are involved in the beta-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications.

Olivera ER, Carnicero D, García B, Miñambres B, Moreno MA, Cañedo L, Dirusso CC, Naharro G, Luengo JM.

Mol Microbiol. 2001 Feb;39(4):863-74.

42.

Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold.

van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK.

EMBO J. 2000 Oct 2;19(19):5167-77.

43.

Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site.

Black PN, DiRusso CC, Sherin D, MacColl R, Knudsen J, Weimar JD.

J Biol Chem. 2000 Dec 8;275(49):38547-53.

44.

Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains.

Dirusso CC, Connell EJ, Faergeman NJ, Knudsen J, Hansen JK, Black PN.

Eur J Biochem. 2000 Jul;267(14):4422-33.

45.
46.

Crystallization and X-ray diffraction studies of the fatty-acid responsive transcription factor FadR from Escherichia coli.

van Aalten DM, Knudsen J, DiRusso CC, Kokko T, Wierenga RK.

Acta Crystallogr D Biol Crystallogr. 2000 Apr;56(Pt 4):469-71.

PMID:
10739923
47.

Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals.

Black PN, Faergeman NJ, DiRusso CC.

J Nutr. 2000 Feb;130(2S Suppl):305S-309S. doi: 10.1093/jn/130.2.305S. Review.

PMID:
10721893
48.

Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium.

Lucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL, Lee CA.

J Bacteriol. 2000 Apr;182(7):1872-82.

49.

Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria.

DiRusso CC, Black PN, Weimar JD.

Prog Lipid Res. 1999 Mar;38(2):129-97. Review. No abstract available.

PMID:
10396600
50.

Supplemental Content

Loading ...
Support Center