Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.

Toporek YJ, Mok JK, Shin HD, Lee BD, Lee MH, DiChristina TJ.

Appl Environ Microbiol. 2019 Jan 23;85(3). pii: e02115-18. doi: 10.1128/AEM.02115-18. Print 2019 Feb 1.

2.

Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990.

Szeinbaum N, Kellum CE, Glass JB, Janda JM, DiChristina TJ.

Int J Syst Evol Microbiol. 2018 Apr;68(4):1356-1360. doi: 10.1099/ijsem.0.002678. Epub 2018 Mar 5.

PMID:
29504926
3.

Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction.

Sekar R, DiChristina TJ.

FEMS Microbiol Lett. 2017 Nov 15;364(21). doi: 10.1093/femsle/fnx203.

PMID:
29029043
4.

Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation.

Szeinbaum N, Lin H, Brandes JA, Taillefert M, Glass JB, DiChristina TJ.

Environ Microbiol. 2017 Sep;19(9):3475-3486. doi: 10.1111/1462-2920.13829. Epub 2017 Jul 17.

5.

Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations.

Bray MS, Wu J, Reed BC, Kretz CB, Belli KM, Simister RL, Henny C, Stewart FJ, DiChristina TJ, Brandes JA, Fowle DA, Crowe SA, Glass JB.

Geobiology. 2017 Sep;15(5):678-689. doi: 10.1111/gbi.12239. Epub 2017 Apr 17.

PMID:
28419718
6.
7.

Direct conversion of cellulose and hemicellulose to fermentable sugars by a microbially-driven Fenton reaction.

Sekar R, Shin HD, DiChristina TJ.

Bioresour Technol. 2016 Oct;218:1133-9. doi: 10.1016/j.biortech.2016.07.087. Epub 2016 Jul 21.

PMID:
27469094
8.

Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis.

Sekar R, Shin HD, DiChristina TJ.

Appl Environ Microbiol. 2016 Jun 13;82(13):3996-4005. doi: 10.1128/AEM.00881-16. Print 2016 Jul 1.

9.

Electron transport and protein secretion pathways involved in Mn(III) reduction by Shewanella oneidensis.

Szeinbaum N, Burns JL, DiChristina TJ.

Environ Microbiol Rep. 2014 Oct;6(5):490-500.

PMID:
25646542
10.

Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane.

Sekar R, DiChristina TJ.

Environ Sci Technol. 2014 Nov 4;48(21):12858-67. doi: 10.1021/es503454a. Epub 2014 Oct 27.

PMID:
25313646
11.

Flow dependent performance of microfluidic microbial fuel cells.

Vigolo D, Al-Housseiny TT, Shen Y, Akinlawon FO, Al-Housseiny ST, Hobson RK, Sahu A, Bedkowski KI, DiChristina TJ, Stone HA.

Phys Chem Chem Phys. 2014 Jun 28;16(24):12535-43. doi: 10.1039/c4cp01086h.

PMID:
24832908
12.

Sulfur-mediated electron shuttling during bacterial iron reduction.

Flynn TM, O'Loughlin EJ, Mishra B, DiChristina TJ, Kemner KM.

Science. 2014 May 30;344(6187):1039-42. doi: 10.1126/science.1252066. Epub 2014 May 1.

13.

Identification of a molecular signature unique to metal-reducing Gammaproteobacteria.

Wee SK, Burns JL, DiChristina TJ.

FEMS Microbiol Lett. 2014 Jan;350(1):90-9. doi: 10.1111/1574-6968.12304. Epub 2013 Nov 5.

14.

Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.

Fennessey CM, Jones ME, Taillefert M, DiChristina TJ.

Appl Environ Microbiol. 2010 Apr;76(8):2425-32. doi: 10.1128/AEM.03066-09. Epub 2010 Feb 26.

15.

Adhesion of Shewanella oneidensis MR-1 to iron (Oxy)(Hydr)oxides: microcolony formation and isotherm.

Zhang M, Ginn BR, Dichristina TJ, Stack AG.

Environ Sci Technol. 2010 Mar 1;44(5):1602-9. doi: 10.1021/es901793a.

PMID:
20131792
16.

Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.

Jones ME, Fennessey CM, DiChristina TJ, Taillefert M.

Environ Microbiol. 2010 Apr;12(4):938-50. doi: 10.1111/j.1462-2920.2009.02137.x. Epub 2010 Jan 18.

PMID:
20089045
17.

Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(III) oxides.

Burns JL, Ginn BR, Bates DJ, Dublin SN, Taylor JV, Apkarian RP, Amaro-Garcia S, Neal AL, Dichristina TJ.

Environ Sci Technol. 2010 Jan 1;44(1):68-73. doi: 10.1021/es9018699.

PMID:
20039735
18.
19.

Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.

Taillefert M, Beckler JS, Carey E, Burns JL, Fennessey CM, DiChristina TJ.

J Inorg Biochem. 2007 Nov;101(11-12):1760-7. Epub 2007 Jul 25.

PMID:
17765315
20.

Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp.

Neal AL, Dublin SN, Taylor J, Bates DJ, Burns JL, Apkarian R, DiChristina TJ.

Biomacromolecules. 2007 Jan;8(1):166-74.

PMID:
17206803
22.
23.

Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens.

Haas JR, DiChristina TJ.

Environ Sci Technol. 2002 Feb 1;36(3):373-80.

PMID:
11871551
25.
26.
27.

Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens.

Wade R, DiChristina TJ.

FEMS Microbiol Lett. 2000 Mar 15;184(2):143-8.

28.
29.
32.
33.

Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens.

Arnold RG, Hoffmann MR, Dichristina TJ, Picardal FW.

Appl Environ Microbiol. 1990 Sep;56(9):2811-7.

34.

Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.

Arnold RG, DiChristina TJ, Hoffmann MR.

Biotechnol Bioeng. 1988 Oct 20;32(9):1081-96.

PMID:
18587827
35.

Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ("Pseudomonas ferrireductans")

Arnold RG, DiChristina TJ, Hoffmann MR.

Appl Environ Microbiol. 1986 Aug;52(2):281-9. Erratum in: Appl Environ Microbiol 1986 Oct;52(4):974.

Supplemental Content

Loading ...
Support Center