Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 9

1.

The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism.

Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill DA, Cheol Yim W, Ha J, Heyduk K, Goodstein DM, Guo HB, Moseley RC, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham PE, Mewalal R, Beltrán JD, Boxall SF, Dever LV, Palla KJ, Albion R, Garcia T, Mayer JA, Don Lim S, Man Wai C, Peluso P, Van Buren R, De Paoli HC, Borland AM, Guo H, Chen JG, Muchero W, Yin Y, Jacobson DA, Tschaplinski TJ, Hettich RL, Ming R, Winter K, Leebens-Mack JH, Smith JAC, Cushman JC, Schmutz J, Tuskan GA.

Nat Commun. 2017 Dec 1;8(1):1899. doi: 10.1038/s41467-017-01491-7.

2.
3.

Emerging model systems for functional genomics analysis of Crassulacean acid metabolism.

Hartwell J, Dever LV, Boxall SF.

Curr Opin Plant Biol. 2016 Jun;31:100-8. doi: 10.1016/j.pbi.2016.03.019. Epub 2016 Apr 12. Review.

4.

A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.

Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JA, De Paoli HC, Weston DJ, Cottingham R, Hartwell J, Davis SC, Silvera K, Ming R, Schlauch K, Abraham P, Stewart JR, Guo HB, Albion R, Ha J, Lim SD, Wone BW, Yim WC, Garcia T, Mayer JA, Petereit J, Nair SS, Casey E, Hettich RL, Ceusters J, Ranjan P, Palla KJ, Yin H, Reyes-García C, Andrade JL, Freschi L, Beltrán JD, Dever LV, Boxall SF, Waller J, Davies J, Bupphada P, Kadu N, Winter K, Sage RF, Aguilar CN, Schmutz J, Jenkins J, Holtum JA.

New Phytol. 2015 Aug;207(3):491-504. doi: 10.1111/nph.13393. Review.

5.

Transgenic perturbation of the decarboxylation phase of Crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth.

Dever LV, Boxall SF, Kneřová J, Hartwell J.

Plant Physiol. 2015 Jan;167(1):44-59. doi: 10.1104/pp.114.251827. Epub 2014 Nov 5.

6.

Characterisation of seeds of a C4 phosphoenolpyruvate carboxylase-deficient mutant of Amaranthus edulis.

Alvarez R, Gandullo J, Feria AB, Dever LV, Vidal J, Echevarría C.

Plant Biol (Stuttg). 2011 Jan;13(1):16-21. doi: 10.1111/j.1438-8677.2010.00347.x.

PMID:
21143720
7.

Control of C4 photosynthesis: effects of reduced activities of phosphoenolpyruvate carboxylase on CO2 assimilation in Amaranthus edulis L.

Bailey KJ, Battistelli A, Dever LV, Lea PJ, Leegood RC.

J Exp Bot. 2000 Feb;51 Spec No:339-46.

PMID:
10938841
8.

A splice site mutation gives rise to a mutant of the C4 plant Amaranthus edulis deficient in phosphoenolpyruvate carboxylase activity.

Grisvard J, Keryer E, Takvorian A, Dever LV, Lea PJ, Vidal J.

Gene. 1998 Jun 15;213(1-2):31-5.

PMID:
9630496
9.

Supplemental Content

Loading ...
Support Center