Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60


Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit.

Denis CL, Laue TM, Wang X.

Sci Rep. 2018 Jul 31;8(1):11468. doi: 10.1038/s41598-018-29832-6.


Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size.

Denis CL, Richardson R, Park S, Zhang C, Xi W, Laue TM, Wang X.

Proteins. 2018 Feb;86(2):177-191. doi: 10.1002/prot.25422. Epub 2017 Nov 27.


Multiple discrete soluble aggregates influence polyglutamine toxicity in a Huntington's disease model system.

Xi W, Wang X, Laue TM, Denis CL.

Sci Rep. 2016 Oct 10;6:34916. doi: 10.1038/srep34916.


Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

Wang X, Xi W, Toomey S, Chiang YC, Hasek J, Laue TM, Denis CL.

PLoS One. 2016 Mar 8;11(3):e0150616. doi: 10.1371/journal.pone.0150616. eCollection 2016.


Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes.

Zhang C, Wang X, Park S, Chiang YC, Xi W, Laue TM, Denis CL.

Protein Sci. 2014 Aug;23(8):1036-49. doi: 10.1002/pro.2490. Epub 2014 Jun 2.


The RRM1 domain of the poly(A)-binding protein from Saccharomyces cerevisiae is critical to control of mRNA deadenylation.

Zhang C, Lee DJ, Chiang YC, Richardson R, Park S, Wang X, Laue TM, Denis CL.

Mol Genet Genomics. 2013 Sep;288(9):401-12. doi: 10.1007/s00438-013-0759-3. Epub 2013 Jun 21.


Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

Richardson R, Denis CL, Zhang C, Nielsen MEO, Chiang YC, Kierkegaard M, Wang X, Lee DJ, Andersen JS, Yao G.

Mol Genet Genomics. 2012 Sep;287(9):711-730. doi: 10.1007/s00438-012-0709-5. Epub 2012 Jul 27.


Use of the novel technique of analytical ultracentrifugation with fluorescence detection system identifies a 77S monosomal translation complex.

Wang X, Zhang C, Chiang YC, Toomey S, Power MP, Granoff ME, Richardson R, Xi W, Lee DJ, Chase S, Laue TM, Denis CL.

Protein Sci. 2012 Sep;21(9):1253-68. doi: 10.1002/pro.2110. Epub 2012 Jul 16.


PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure.

Lee D, Ohn T, Chiang YC, Quigley G, Yao G, Liu Y, Denis CL.

J Mol Biol. 2010 Jun 18;399(4):562-75. doi: 10.1016/j.jmb.2010.04.034. Epub 2010 May 8.


Identification of CCR4 and other essential thyroid hormone receptor co-activators by modified yeast synthetic genetic array analysis.

Govindan M, Meng X, Denis CL, Webb P, Baxter JD, Walfish PG.

Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19854-9. doi: 10.1073/pnas.0910134106. Epub 2009 Nov 10.


Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes.

Cui Y, Ramnarain DB, Chiang YC, Ding LH, McMahon JS, Denis CL.

Mol Genet Genomics. 2008 Apr;279(4):323-37. doi: 10.1007/s00438-007-0314-1. Epub 2008 Jan 23.


PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo.

Yao G, Chiang YC, Zhang C, Lee DJ, Laue TM, Denis CL.

Mol Cell Biol. 2007 Sep;27(17):6243-53. Epub 2007 Jul 9.


CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4.

Ohn T, Chiang YC, Lee DJ, Yao G, Zhang C, Denis CL.

Nucleic Acids Res. 2007;35(9):3002-15. Epub 2007 Apr 16.


Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae.

Traven A, Hammet A, Tenis N, Denis CL, Heierhorst J.

Genetics. 2005 Jan;169(1):65-75. Epub 2004 Sep 30.


Systematic mutagenesis of the leucine-rich repeat (LRR) domain of CCR4 reveals specific sites for binding to CAF1 and a separate critical role for the LRR in CCR4 deadenylase activity.

Clark LB, Viswanathan P, Quigley G, Chiang YC, McMahon JS, Yao G, Chen J, Nelsbach A, Denis CL.

J Biol Chem. 2004 Apr 2;279(14):13616-23. Epub 2004 Jan 20.


The CCR4-NOT complex plays diverse roles in mRNA metabolism.

Denis CL, Chen J.

Prog Nucleic Acid Res Mol Biol. 2003;73:221-50. Review.


Identification of multiple RNA features that influence CCR4 deadenylation activity.

Viswanathan P, Chen J, Chiang YC, Denis CL.

J Biol Chem. 2003 Apr 25;278(17):14949-55. Epub 2003 Feb 17.


Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex.

Chen J, Rappsilber J, Chiang YC, Russell P, Mann M, Denis CL.

J Mol Biol. 2001 Dec 7;314(4):683-94.


Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation.

Denis CL, Chiang YC, Cui Y, Chen J.

Genetics. 2001 Jun;158(2):627-34.


The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae.

Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R.

Cell. 2001 Feb 9;104(3):377-86.


Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme.

Liu HY, Chiang YC, Pan J, Chen J, Salvadore C, Audino DC, Badarinarayana V, Palaniswamy V, Anderson B, Denis CL.

J Biol Chem. 2001 Mar 9;276(10):7541-8. Epub 2000 Dec 11.


The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5.

Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL.

Mol Cell Biol. 1999 Oct;19(10):6642-51.


A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling.

Chang M, French-Cornay D, Fan HY, Klein H, Denis CL, Jaehning JA.

Mol Cell Biol. 1999 Feb;19(2):1056-67.


ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex.

Komarnitsky PB, Klebanow ER, Weil PA, Denis CL.

Mol Cell Biol. 1998 Oct;18(10):5861-7.


DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein.

Komarnitsky SI, Chiang YC, Luca FC, Chen J, Toyn JH, Winey M, Johnston LH, Denis CL.

Mol Cell Biol. 1998 Apr;18(4):2100-7.


The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively.

Liu HY, Badarinarayana V, Audino DC, Rappsilber J, Mann M, Denis CL.

EMBO J. 1998 Feb 16;17(4):1096-106.


Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae.

Hata H, Mitsui H, Liu H, Bai Y, Denis CL, Shimizu Y, Sakai A.

Genetics. 1998 Feb;148(2):571-9.


Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription.

Verdone L, Cesari F, Denis CL, Di Mauro E, Caserta M.

J Biol Chem. 1997 Dec 5;272(49):30828-34.


ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB.

Chiang YC, Komarnitsky P, Chase D, Denis CL.

J Biol Chem. 1996 Dec 13;271(50):32359-65.


A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids.

Simon MM, Pavlik P, Hartig A, Binder M, Ruis H, Cook WJ, Denis CL, Schanz B.

Mol Gen Genet. 1995 Nov 27;249(3):289-96.


Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation.

Cook WJ, Mosley SP, Audino DC, Mullaney DL, Rovelli A, Stewart G, Denis CL.

J Biol Chem. 1994 Mar 25;269(12):9374-9.


Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1.

Vallari RC, Cook WJ, Audino DC, Morgan MJ, Jensen DE, Laudano AP, Denis CL.

Mol Cell Biol. 1992 Apr;12(4):1663-73.


Supplemental Content

Loading ...
Support Center