Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 105

1.

Cell Wall-Associated Virulence Factors Contribute to Increased Resilience of Old Cryptococcus neoformans Cells.

Orner EP, Bhattacharya S, Kalenja K, Hayden D, Del Poeta M, Fries BC.

Front Microbiol. 2019 Nov 7;10:2513. doi: 10.3389/fmicb.2019.02513. eCollection 2019.

2.

Sphingolipid biosynthetic pathway is crucial for growth, biofilm formation and membrane integrity of Scedosporium boydii.

Rollin-Pinheiro R, Rochetti VP, Xisto MIDDS, Liporagi-Lopes LC, Bastos B, Rella A, Singh A, Rozental S, Del Poeta M, Barreto-Bergter E.

Future Med Chem. 2019 Nov;11(22):2905-2917. doi: 10.4155/fmc-2019-0186. Epub 2019 Nov 12.

PMID:
31713454
3.

Pho85 and PI(4,5)P2 regulate different lipid metabolic pathways in response to cold.

Prieto JA, Estruch F, Córcoles-Sáez I, Del Poeta M, Rieger R, Stenzel I, Randez-Gil F.

Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Oct 31;1865(2):158557. doi: 10.1016/j.bbalip.2019.158557. [Epub ahead of print]

PMID:
31678512
4.

Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae.

Liu XH, Liang S, Wei YY, Zhu XM, Li L, Liu PP, Zheng QX, Zhou HN, Zhang Y, Mao LJ, Fernandes CM, Del Poeta M, Naqvi NI, Lin FC.

MBio. 2019 Aug 20;10(4). pii: e01467-19. doi: 10.1128/mBio.01467-19.

5.

SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents.

Haranahalli K, Lazzarini C, Sun Y, Zambito J, Pathiranage S, McCarthy JB, Mallamo J, Del Poeta M, Ojima I.

J Med Chem. 2019 Sep 12;62(17):8249-8273. doi: 10.1021/acs.jmedchem.9b01004. Epub 2019 Aug 16.

PMID:
31369263
6.

Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model.

Colombo AC, Rella A, Normile T, Joffe LS, Tavares PM, de S Araújo GR, Frases S, Orner EP, Farnoud AM, Fries BC, Sheridan B, Nimrichter L, Rodrigues ML, Del Poeta M.

MBio. 2019 Apr 2;10(2). pii: e02909-18. doi: 10.1128/mBio.02909-18.

7.

The AGC Kinase YpkA Regulates Sphingolipids Biosynthesis and Physically Interacts With SakA MAP Kinase in Aspergillus fumigatus.

Fabri JHTM, Godoy NL, Rocha MC, Munshi M, Cocio TA, von Zeska Kress MR, Fill TP, da Cunha AF, Del Poeta M, Malavazi I.

Front Microbiol. 2019 Jan 14;9:3347. doi: 10.3389/fmicb.2018.03347. eCollection 2018.

8.

Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead.

Luberto C, Haley JD, Del Poeta M.

Chem Phys Lipids. 2019 Mar;219:1-14. doi: 10.1016/j.chemphyslip.2019.01.001. Epub 2019 Jan 11. Review.

PMID:
30641043
9.

Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi.

Fernandes CM, Goldman GH, Del Poeta M.

MBio. 2018 May 15;9(3). pii: e00642-18. doi: 10.1128/mBio.00642-18. Review.

10.

Erratum for Mor et al., "Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids".

Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M.

MBio. 2018 Mar 13;9(2). pii: e00188-18. doi: 10.1128/mBio.00188-18. No abstract available.

11.

Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids.

Lazzarini C, Haranahalli K, Rieger R, Ananthula HK, Desai PB, Ashbaugh A, Linke MJ, Cushion MT, Ruzsicska B, Haley J, Ojima I, Del Poeta M.

Antimicrob Agents Chemother. 2018 Apr 26;62(5). pii: e00156-18. doi: 10.1128/AAC.00156-18. Print 2018 May.

12.

Sphingosine-1-phosphate receptors and innate immunity.

Bryan AM, Del Poeta M.

Cell Microbiol. 2018 May;20(5):e12836. doi: 10.1111/cmi.12836. Epub 2018 Mar 23. Review.

13.

The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans.

Munshi MA, Gardin JM, Singh A, Luberto C, Rieger R, Bouklas T, Fries BC, Del Poeta M.

Cell Rep. 2018 Feb 6;22(6):1392-1400. doi: 10.1016/j.celrep.2018.01.035.

14.

The putative flippase Apt1 is required for intracellular membrane architecture and biosynthesis of polysaccharide and lipids in Cryptococcus neoformans.

Rizzo J, Colombo AC, Zamith-Miranda D, Silva VKA, Allegood JC, Casadevall A, Del Poeta M, Nosanchuk JD, Kronstad JW, Rodrigues ML.

Biochim Biophys Acta Mol Cell Res. 2018 Mar;1865(3):532-541. doi: 10.1016/j.bbamcr.2017.12.007. Epub 2017 Dec 29.

15.

Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans.

Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A, Mor V, Desmarini D, Djordjevic J, Raleigh DP, Rodrigues ML, London E, Del Poeta M, Farnoud AM.

Biochim Biophys Acta Biomembr. 2017 Nov;1859(11):2224-2233. doi: 10.1016/j.bbamem.2017.08.017. Epub 2017 Sep 1.

16.

Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains.

Singh A, MacKenzie A, Girnun G, Del Poeta M.

J Lipid Res. 2017 Oct;58(10):2017-2036. doi: 10.1194/jlr.M078600. Epub 2017 Aug 15.

17.

The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis.

Kim JH, Singh A, Del Poeta M, Brown DA, London E.

J Cell Sci. 2017 Aug 15;130(16):2682-2695. doi: 10.1242/jcs.201731. Epub 2017 Jun 27.

18.

Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

Bouklas T, Alonso-Crisóstomo L, Székely T Jr, Diago-Navarro E, Orner EP, Smith K, Munshi MA, Del Poeta M, Balázsi G, Fries BC.

PLoS Pathog. 2017 May 10;13(5):e1006355. doi: 10.1371/journal.ppat.1006355. eCollection 2017 May.

19.

The Anti-helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans.

Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, Schrank A, Del Poeta M, Vainstein MH, Rodrigues ML.

Front Microbiol. 2017 Mar 28;8:535. doi: 10.3389/fmicb.2017.00535. eCollection 2017.

20.

Special Issue: Novel Antifungal Drug Discovery.

Del Poeta M.

J Fungi (Basel). 2016 Dec;2(4). pii: 33. doi: 10.3390/jof2040033. Epub 2016 Dec 14.

21.

Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity.

Fernandes CM, de Castro PA, Singh A, Fonseca FL, Pereira MD, Vila TV, Atella GC, Rozental S, Savoldi M, Del Poeta M, Goldman GH, Kurtenbach E.

Mol Microbiol. 2016 Nov;102(3):488-505. doi: 10.1111/mmi.13474. Epub 2016 Aug 25.

22.

The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence.

Alves de Castro P, Dos Reis TF, Dolan SK, Oliveira Manfiolli A, Brown NA, Jones GW, Doyle S, Riaño-Pachón DM, Squina FM, Caldana C, Singh A, Del Poeta M, Hagiwara D, Silva-Rocha R, Goldman GH.

Mol Microbiol. 2016 Nov;102(4):642-671. doi: 10.1111/mmi.13484. Epub 2016 Oct 7.

23.

Sphingolipids as targets for treatment of fungal infections.

Rollin-Pinheiro R, Singh A, Barreto-Bergter E, Del Poeta M.

Future Med Chem. 2016 Aug;8(12):1469-84. doi: 10.4155/fmc-2016-0053. Epub 2016 Aug 9. Review.

24.

Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells.

Nimrichter L, de Souza MM, Del Poeta M, Nosanchuk JD, Joffe L, Tavares Pde M, Rodrigues ML.

Front Microbiol. 2016 Jul 8;7:1034. doi: 10.3389/fmicb.2016.01034. eCollection 2016. Review.

25.

Potential Roles of Fungal Extracellular Vesicles during Infection.

Joffe LS, Nimrichter L, Rodrigues ML, Del Poeta M.

mSphere. 2016 Jun 29;1(4). pii: e00099-16. doi: 10.1128/mSphere.00099-16. eCollection 2016 Jul-Aug. Review.

26.

Secretory aspartyl proteinases induce neutrophil chemotaxis in vivo.

Bryan AM, Del Poeta M.

Virulence. 2016 Oct 2;7(7):737-9. doi: 10.1080/21505594.2016.1206170. Epub 2016 Jun 30. No abstract available.

27.

Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens.

Singh A, Del Poeta M.

Front Microbiol. 2016 Apr 14;7:501. doi: 10.3389/fmicb.2016.00501. eCollection 2016. Review.

28.

Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

Mor V, Farnoud AM, Singh A, Rella A, Tanno H, Ishii K, Kawakami K, Sato T, Del Poeta M.

PLoS One. 2016 Apr 15;11(4):e0153853. doi: 10.1371/journal.pone.0153853. eCollection 2016.

29.

Plasma membrane lipids and their role in fungal virulence.

Rella A, Farnoud AM, Del Poeta M.

Prog Lipid Res. 2016 Jan;61:63-72. doi: 10.1016/j.plipres.2015.11.003. Epub 2015 Dec 15. Review.

30.

Sphingolipids as Regulators of the Phagocytic Response to Fungal Infections.

Bryan AM, Del Poeta M, Luberto C.

Mediators Inflamm. 2015;2015:640540. doi: 10.1155/2015/640540. Epub 2015 Nov 25. Review.

31.

New insights on the development of fungal vaccines: from immunity to recent challenges.

Medici NP, Del Poeta M.

Mem Inst Oswaldo Cruz. 2015 Dec;110(8):966-73. doi: 10.1590/0074-02760150335. Epub 2015 Nov 24. Review.

32.

Transmembrane transporter expression regulated by the glucosylceramide pathway in Cryptococcus neoformans.

Singh A, Rella A, Schwacke J, Vacchi-Suzzi C, Luberto C, Del Poeta M.

BMC Res Notes. 2015 Nov 16;8:681. doi: 10.1186/s13104-015-1613-y.

33.

Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development.

Rella A, Mor V, Farnoud AM, Singh A, Shamseddine AA, Ivanova E, Carpino N, Montagna MT, Luberto C, Del Poeta M.

Front Microbiol. 2015 Aug 11;6:836. doi: 10.3389/fmicb.2015.00836. eCollection 2015.

34.

Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids.

Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M.

MBio. 2015 Jun 23;6(3):e00647. doi: 10.1128/mBio.00647-15. Erratum in: MBio. 2018 Mar 13;9(2):.

35.

Raft-like membrane domains in pathogenic microorganisms.

Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E.

Curr Top Membr. 2015;75:233-68. doi: 10.1016/bs.ctm.2015.03.005. Epub 2015 Apr 11. Review.

36.

Correction: synthesis and biological properties of fungal glucosylceramide.

Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C.

PLoS Pathog. 2015 May 21;11(5):e1004886. doi: 10.1371/journal.ppat.1004886. eCollection 2015 May. No abstract available.

37.

The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway.

Farnoud AM, Bryan AM, Kechichian T, Luberto C, Del Poeta M.

Infect Immun. 2015 Jul;83(7):2705-13. doi: 10.1128/IAI.00056-15. Epub 2015 Apr 20.

38.

Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans.

Bryan AM, Farnoud AM, Mor V, Del Poeta M.

J Vis Exp. 2014 Dec 19;(94). doi: 10.3791/52432.

39.

Inositol phosphosphingolipid phospholipase C1 regulates plasma membrane ATPase (Pma1) stability in Cryptococcus neoformans.

Farnoud AM, Mor V, Singh A, Del Poeta M.

FEBS Lett. 2014 Nov 3;588(21):3932-8. doi: 10.1016/j.febslet.2014.09.005. Epub 2014 Sep 18.

40.

Synthesis and biological properties of fungal glucosylceramide.

Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C.

PLoS Pathog. 2014 Jan;10(1):e1003832. doi: 10.1371/journal.ppat.1003832. Epub 2014 Jan 9. Review. No abstract available. Erratum in: PLoS Pathog. 2015 May;11(5):e1004886.

41.

A novel small molecule methyltransferase is important for virulence in Candida albicans.

Lissina E, Weiss D, Young B, Rella A, Cheung-Ong K, Del Poeta M, Clarke SG, Giaever G, Nislow C.

ACS Chem Biol. 2013 Dec 20;8(12):2785-93. doi: 10.1021/cb400607h. Epub 2013 Oct 16.

42.

Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice.

Tripathi K, Mor V, Bairwa NK, Del Poeta M, Mohanty BK.

Front Microbiol. 2012 May 24;3:187. doi: 10.3389/fmicb.2012.00187. eCollection 2012.

43.

Cryptococcus and cryptococcosis in the twenty-first century.

Del Poeta M, Chaturvedi V.

Mycopathologia. 2012 Jun;173(5-6):283-5. doi: 10.1007/s11046-012-9544-9. No abstract available.

PMID:
22531978
44.

Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans.

Singh A, Wang H, Silva LC, Na C, Prieto M, Futerman AH, Luberto C, Del Poeta M.

Cell Microbiol. 2012 Apr;14(4):500-16. doi: 10.1111/j.1462-5822.2011.01735.x. Epub 2012 Jan 9.

45.

The presence of 3-hydroxy oxylipins in pathogenic microbes.

Sebolai OM, Pohl CH, Kock LJ, Chaturvedi V, del Poeta M.

Prostaglandins Other Lipid Mediat. 2012 Jan;97(1-2):17-21. doi: 10.1016/j.prostaglandins.2011.11.001. Epub 2011 Nov 11. Review.

46.

Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

Rella A, Yang MW, Gruber J, Montagna MT, Luberto C, Zhang YM, Del Poeta M.

Mycopathologia. 2012 Jun;173(5-6):451-61. doi: 10.1007/s11046-011-9494-7. Epub 2011 Nov 11.

47.

Toward developing a universal treatment for fungal disease using radioimmunotherapy targeting common fungal antigens.

Bryan RA, Guimaraes AJ, Hopcraft S, Jiang Z, Bonilla K, Morgenstern A, Bruchertseifer F, Del Poeta M, Torosantucci A, Cassone A, Nosanchuk JD, Casadevall A, Dadachova E.

Mycopathologia. 2012 Jun;173(5-6):463-71. doi: 10.1007/s11046-011-9476-9. Epub 2011 Nov 3.

48.

Expression and characterization of Cryptococcus neoformans recombinant App1.

Qureshi A, Williams V, Del Poeta M.

Mycopathologia. 2012 Jun;173(5-6):395-405. doi: 10.1007/s11046-011-9486-7. Epub 2011 Oct 5.

49.

Detection of antibody against fungal glucosylceramide in immunocompromised patients: a potential new diagnostic approach for cryptococcosis.

Qureshi A, Wray D, Rhome R, Barry W, Del Poeta M.

Mycopathologia. 2012 Jun;173(5-6):419-25. doi: 10.1007/s11046-011-9485-8. Epub 2011 Oct 5.

50.

Cryptococcus neoformans modulates extracellular killing by neutrophils.

Qureshi A, Grey A, Rose KL, Schey KL, Del Poeta M.

Front Microbiol. 2011 Sep 21;2:193. doi: 10.3389/fmicb.2011.00193. eCollection 2011.

Supplemental Content

Loading ...
Support Center