Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 174

1.

Biosynthesis of the nitrogenase active-site cofactor precursor NifB-co in Saccharomyces cerevisiae.

Burén S, Pratt K, Jiang X, Guo Y, Jimenez-Vicente E, Echavarri-Erasun C, Dean DR, Saaem I, Gordon DB, Voigt CA, Rubio LM.

Proc Natl Acad Sci U S A. 2019 Nov 25. pii: 201904903. doi: 10.1073/pnas.1904903116. [Epub ahead of print]

2.

Time-Resolved EPR Study of H2 Reductive Elimination from the Photoexcited Nitrogenase Janus E4(4H) Intermediate.

Lukoyanov DA, Krzyaniak MD, Dean DR, Wasielewski MR, Seefeldt LC, Hoffman BM.

J Phys Chem B. 2019 Oct 17;123(41):8823-8828. doi: 10.1021/acs.jpcb.9b07776. Epub 2019 Oct 8.

PMID:
31549504
3.

Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N2 Reduction.

Harris DF, Lukoyanov DA, Kallas H, Trncik C, Yang ZY, Compton P, Kelleher N, Einsle O, Dean DR, Hoffman BM, Seefeldt LC.

Biochemistry. 2019 Jul 30;58(30):3293-3301. doi: 10.1021/acs.biochem.9b00468. Epub 2019 Jul 19.

PMID:
31283201
4.

World Workshop on Oral Medicine VII: Relative frequency of oral mucosal lesions in children, a scoping review.

Hong CHL, Dean DR, Hull K, Hu SJ, Sim YF, Nadeau C, Gonçalves S, Lodi G, Hodgson TA.

Oral Dis. 2019 Jun;25 Suppl 1:193-203. doi: 10.1111/odi.13112. Review.

PMID:
31034120
5.

The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters.

Jimenez-Vicente E, Yang ZY, Martin Del Campo JS, Cash VL, Seefeldt LC, Dean DR.

J Biol Chem. 2019 Apr 19;294(16):6204-6213. doi: 10.1074/jbc.RA119.007905. Epub 2019 Mar 7.

6.

Application of affinity purification methods for analysis of the nitrogenase system from Azotobacter vinelandii.

Jiménez-Vicente E, Martin Del Campo JS, Yang ZY, Cash VL, Dean DR, Seefeldt LC.

Methods Enzymol. 2018;613:231-255. doi: 10.1016/bs.mie.2018.10.007. Epub 2018 Nov 23.

PMID:
30509468
7.

Kinetic Understanding of N2 Reduction versus H2 Evolution at the E4(4H) Janus State in the Three Nitrogenases.

Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

Biochemistry. 2018 Oct 2;57(39):5706-5714. doi: 10.1021/acs.biochem.8b00784. Epub 2018 Sep 19.

8.

Energy Transduction in Nitrogenase.

Seefeldt LC, Hoffman BM, Peters JW, Raugei S, Beratan DN, Antony E, Dean DR.

Acc Chem Res. 2018 Sep 18;51(9):2179-2186. doi: 10.1021/acs.accounts.8b00112. Epub 2018 Aug 10.

9.

Sequential and differential interaction of assembly factors during nitrogenase MoFe protein maturation.

Jimenez-Vicente E, Yang ZY, Ray WK, Echavarri-Erasun C, Cash VL, Rubio LM, Seefeldt LC, Dean DR.

J Biol Chem. 2018 Jun 22;293(25):9812-9823. doi: 10.1074/jbc.RA118.002994. Epub 2018 May 3.

10.

Hydride Conformers of the Nitrogenase FeMo-cofactor Two-Electron Reduced State E2(2H), Assigned Using Cryogenic Intra Electron Paramagnetic Resonance Cavity Photolysis.

Lukoyanov DA, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

Inorg Chem. 2018 Jun 18;57(12):6847-6852. doi: 10.1021/acs.inorgchem.8b00271. Epub 2018 Mar 24.

11.

Mechanism of N2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H2.

Harris DF, Lukoyanov DA, Shaw S, Compton P, Tokmina-Lukaszewska M, Bothner B, Kelleher N, Dean DR, Hoffman BM, Seefeldt LC.

Biochemistry. 2018 Feb 6;57(5):701-710. doi: 10.1021/acs.biochem.7b01142. Epub 2018 Jan 17.

12.

Electrocatalytic CO2 reduction catalyzed by nitrogenase MoFe and FeFe proteins.

Hu B, Harris DF, Dean DR, Liu TL, Yang ZY, Seefeldt LC.

Bioelectrochemistry. 2018 Apr;120:104-109. doi: 10.1016/j.bioelechem.2017.12.002. Epub 2017 Dec 5.

PMID:
29223886
13.

Mechanism of Nitrogenase H2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects.

Khadka N, Milton RD, Shaw S, Lukoyanov D, Dean DR, Minteer SD, Raugei S, Hoffman BM, Seefeldt LC.

J Am Chem Soc. 2017 Sep 27;139(38):13518-13524. doi: 10.1021/jacs.7b07311. Epub 2017 Sep 15.

14.

Infrared spectroscopy of the nitrogenase MoFe protein under electrochemical control: potential-triggered CO binding.

Paengnakorn P, Ash PA, Shaw S, Danyal K, Chen T, Dean DR, Seefeldt LC, Vincent KA.

Chem Sci. 2017 Feb 1;8(2):1500-1505. doi: 10.1039/c6sc02860h. Epub 2016 Oct 27.

15.

Keeping the nitrogen-fixation dream alive.

Vicente EJ, Dean DR.

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3009-3011. doi: 10.1073/pnas.1701560114. Epub 2017 Mar 10. No abstract available.

16.

Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H2 Intermediate.

Lukoyanov D, Khadka N, Dean DR, Raugei S, Seefeldt LC, Hoffman BM.

Inorg Chem. 2017 Feb 20;56(4):2233-2240. doi: 10.1021/acs.inorgchem.6b02899. Epub 2017 Feb 8.

17.

Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements.

Davydov R, Khadka N, Yang ZY, Fielding AJ, Lukoyanov D, Dean DR, Seefeldt LC, Hoffman BM.

Isr J Chem. 2016 Oct;56(9-10):841-851. Epub 2016 Jul 29.

18.

Negative cooperativity in the nitrogenase Fe protein electron delivery cycle.

Danyal K, Shaw S, Page TR, Duval S, Horitani M, Marts AR, Lukoyanov D, Dean DR, Raugei S, Hoffman BM, Seefeldt LC, Antony E.

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5783-E5791.

19.

Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.

Fixen KR, Zheng Y, Harris DF, Shaw S, Yang ZY, Dean DR, Seefeldt LC, Harwood CS.

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10163-7. doi: 10.1073/pnas.1611043113. Epub 2016 Aug 22.

20.

Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.

Lukoyanov D, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2016 Aug 24;138(33):10674-83. doi: 10.1021/jacs.6b06362. Epub 2016 Aug 16.

21.

CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.

Khadka N, Dean DR, Smith D, Hoffman BM, Raugei S, Seefeldt LC.

Inorg Chem. 2016 Sep 6;55(17):8321-30. doi: 10.1021/acs.inorgchem.6b00388. Epub 2016 Aug 8.

22.

Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.

Yang ZY, Ledbetter R, Shaw S, Pence N, Tokmina-Lukaszewska M, Eilers B, Guo Q, Pokhrel N, Cash VL, Dean DR, Antony E, Bothner B, Peters JW, Seefeldt LC.

Biochemistry. 2016 Jul 5;55(26):3625-35. doi: 10.1021/acs.biochem.6b00421. Epub 2016 Jun 22.

PMID:
27295169
23.

Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate.

Lukoyanov D, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2016 Feb 3;138(4):1320-7. doi: 10.1021/jacs.5b11650. Epub 2016 Jan 20.

24.

Trading Places-Switching Frataxin Function by a Single Amino Acid Substitution within the [Fe-S] Cluster Assembly Scaffold.

Dean DR, Dos Santos PC.

PLoS Genet. 2015 May 21;11(5):e1005192. doi: 10.1371/journal.pgen.1005192. eCollection 2015 May. No abstract available.

25.

Fe protein-independent substrate reduction by nitrogenase MoFe protein variants.

Danyal K, Rasmussen AJ, Keable SM, Inglet BS, Shaw S, Zadvornyy OA, Duval S, Dean DR, Raugei S, Peters JW, Seefeldt LC.

Biochemistry. 2015 Apr 21;54(15):2456-62. doi: 10.1021/acs.biochem.5b00140. Epub 2015 Apr 7.

PMID:
25831270
26.

Special issue on iron-sulfur proteins: Structure, function, biogenesis and diseases.

Lill R, Broderick JB, Dean DR.

Biochim Biophys Acta. 2015 Jun;1853(6):1251-2. doi: 10.1016/j.bbamcr.2015.03.001. Epub 2015 Mar 5. No abstract available.

27.

Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.

Lukoyanov D, Yang ZY, Khadka N, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2015 Mar 18;137(10):3610-5. doi: 10.1021/jacs.5b00103. Epub 2015 Mar 5.

28.

Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of N₂ reduction.

Shaw S, Lukoyanov D, Danyal K, Dean DR, Hoffman BM, Seefeldt LC.

J Am Chem Soc. 2014 Sep 10;136(36):12776-83. doi: 10.1021/ja507123d. Epub 2014 Aug 28.

29.

A confirmation of the quench-cryoannealing relaxation protocol for identifying reduction states of freeze-trapped nitrogenase intermediates.

Lukoyanov D, Yang ZY, Duval S, Danyal K, Dean DR, Seefeldt LC, Hoffman BM.

Inorg Chem. 2014 Apr 7;53(7):3688-93. doi: 10.1021/ic500013c. Epub 2014 Mar 18.

30.

Mechanism of nitrogen fixation by nitrogenase: the next stage.

Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC.

Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27. Review. No abstract available.

31.

Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

Duval S, Danyal K, Shaw S, Lytle AK, Dean DR, Hoffman BM, Antony E, Seefeldt LC.

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16414-9. doi: 10.1073/pnas.1311218110. Epub 2013 Sep 23.

32.

On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.

Yang ZY, Khadka N, Lukoyanov D, Hoffman BM, Dean DR, Seefeldt LC.

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.

33.

Nitrogenase reduction of carbon-containing compounds.

Seefeldt LC, Yang ZY, Duval S, Dean DR.

Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1102-11. doi: 10.1016/j.bbabio.2013.04.003. Epub 2013 Apr 16. Review.

34.

Nitrogenase: a draft mechanism.

Hoffman BM, Lukoyanov D, Dean DR, Seefeldt LC.

Acc Chem Res. 2013 Feb 19;46(2):587-95. doi: 10.1021/ar300267m. Epub 2013 Jan 4.

35.

Crystal structure and functional studies of an unusual L-cysteine desulfurase from Archaeoglobus fulgidus.

Yamanaka Y, Zeppieri L, Nicolet Y, Marinoni EN, de Oliveira JS, Odaka M, Dean DR, Fontecilla-Camps JC.

Dalton Trans. 2013 Mar 7;42(9):3092-9. doi: 10.1039/c2dt32101g. Epub 2012 Nov 19.

PMID:
23160436
36.

Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase.

Yang ZY, Moure VR, Dean DR, Seefeldt LC.

Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19644-8. doi: 10.1073/pnas.1213159109. Epub 2012 Nov 12.

37.

Correction to temperature invariance of the nitrogenase electron transfer mechanism.

Mayweather D, Danyal K, Dean DR, Seefeldt LC, Hoffman BM.

Biochemistry. 2012 Nov 6;51(44):9027. doi: 10.1021/bi301438c. Epub 2012 Oct 25. No abstract available.

38.

A novel device to quantify the mechanical properties of electrospun nanofibers.

Fee TJ, Dean DR, Eberhardt AW, Berry JL.

J Biomech Eng. 2012 Oct;134(10):104503. doi: 10.1115/1.4007635.

PMID:
23083203
39.

Temperature invariance of the nitrogenase electron transfer mechanism.

Mayweather D, Danyal K, Dean DR, Seefeldt LC, Hoffman BM.

Biochemistry. 2012 Oct 23;51(42):8391-8. doi: 10.1021/bi301164j. Epub 2012 Oct 10. Erratum in: Biochemistry. 2012 Nov 6;51(44):9027.

40.

EXAFS and NRVS reveal a conformational distortion of the FeMo-cofactor in the MoFe nitrogenase propargyl alcohol complex.

George SJ, Barney BM, Mitra D, Igarashi RY, Guo Y, Dean DR, Cramer SP, Seefeldt LC.

J Inorg Biochem. 2012 Jul;112:85-92. doi: 10.1016/j.jinorgbio.2012.02.004. Epub 2012 Feb 15.

41.

(IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer.

Marinoni EN, de Oliveira JS, Nicolet Y, Raulfs EC, Amara P, Dean DR, Fontecilla-Camps JC.

Angew Chem Int Ed Engl. 2012 May 29;51(22):5439-42. doi: 10.1002/anie.201201708. Epub 2012 Apr 18. No abstract available.

PMID:
22511353
42.

Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase.

Lukoyanov D, Yang ZY, Barney BM, Dean DR, Seefeldt LC, Hoffman BM.

Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5583-7. doi: 10.1073/pnas.1202197109. Epub 2012 Mar 29.

43.

Electron transfer in nitrogenase catalysis.

Seefeldt LC, Hoffman BM, Dean DR.

Curr Opin Chem Biol. 2012 Apr;16(1-2):19-25. doi: 10.1016/j.cbpa.2012.02.012. Epub 2012 Mar 5. Review.

44.

Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.

Liu Y, Dos Santos PC, Zhu X, Orlando R, Dean DR, Söll D, Yuan J.

J Biol Chem. 2012 Feb 17;287(8):5426-33. doi: 10.1074/jbc.M111.313700. Epub 2011 Dec 13.

45.

57Fe ENDOR spectroscopy and 'electron inventory' analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple.

Doan PE, Telser J, Barney BM, Igarashi RY, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2011 Nov 2;133(43):17329-40. doi: 10.1021/ja205304t. Epub 2011 Oct 7.

46.

Electron transfer within nitrogenase: evidence for a deficit-spending mechanism.

Danyal K, Dean DR, Hoffman BM, Seefeldt LC.

Biochemistry. 2011 Nov 1;50(43):9255-63. doi: 10.1021/bi201003a. Epub 2011 Oct 11.

47.

ENDOR/HYSCORE studies of the common intermediate trapped during nitrogenase reduction of N2H2, CH3N2H, and N2H4 support an alternating reaction pathway for N2 reduction.

Lukoyanov D, Dikanov SA, Yang ZY, Barney BM, Samoilova RI, Narasimhulu KV, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2011 Aug 3;133(30):11655-64. doi: 10.1021/ja2036018. Epub 2011 Jul 11.

48.

Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

Hamilton TL, Jacobson M, Ludwig M, Boyd ES, Bryant DA, Dean DR, Peters JW.

J Bacteriol. 2011 Sep;193(17):4534-6. doi: 10.1128/JB.05100-11. Epub 2011 Jul 1.

49.

Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii.

Hamilton TL, Ludwig M, Dixon R, Boyd ES, Dos Santos PC, Setubal JC, Bryant DA, Dean DR, Peters JW.

J Bacteriol. 2011 Sep;193(17):4477-86. doi: 10.1128/JB.05099-11. Epub 2011 Jul 1.

50.

Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons.

Yang ZY, Dean DR, Seefeldt LC.

J Biol Chem. 2011 Jun 3;286(22):19417-21. doi: 10.1074/jbc.M111.229344. Epub 2011 Mar 28.

Supplemental Content

Support Center