Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

Dispersion, persistence, and stability of the biocontrol agent Penicillium frequentans strain 909 after stone fruit tree applications.

Guijarro B, Larena I, Vilanova L, Torres R, Balsells-Llauradó M, Teixidó N, Melgarejo P, De Cal A.

Environ Sci Pollut Res Int. 2019 Aug 7. doi: 10.1007/s11356-019-06023-y. [Epub ahead of print]

PMID:
31392610
2.

Genetic diversity and vegetative compatibility of Fusarium solani species complex of strawberry in Spain.

De la Lastra E, Villarino M, Astacio JD, Larena I, De Cal A, Capote N.

Phytopathology. 2019 Aug 1. doi: 10.1094/PHYTO-05-19-0173-R. [Epub ahead of print]

PMID:
31369361
3.

Characterization of Fusarium solani Populations Associated with Spanish Strawberry Crops.

Villarino M, De la Lastra E, Basallote-Ureba MJ, Capote N, Larena I, Melgarejo P, De Cal A.

Plant Dis. 2019 Aug;103(8):1974-1982. doi: 10.1094/PDIS-02-19-0342-RE. Epub 2019 Jun 18.

PMID:
31210598
4.

Surfactant effects on wettability of Penicillium frequentans formulations to improve brown rot biocontrol.

Guijarro B, Larena I, Melgarejo P, De Cal A.

J Sci Food Agric. 2018 Dec;98(15):5832-5840. doi: 10.1002/jsfa.9133. Epub 2018 Jun 26.

PMID:
29770458
5.

Genome Sequence of the Brown Rot Fungal Pathogen Monilinia laxa.

Naranjo-Ortíz MA, Rodríguez-Píres S, Torres R, De Cal A, Usall J, Gabaldón T.

Genome Announc. 2018 Apr 26;6(17). pii: e00214-18. doi: 10.1128/genomeA.00214-18.

6.

Detection of Latent Monilinia Infections in Nectarine Flowers and Fruit by qPCR.

Garcia-Benitez C, Melgarejo P, De Cal A.

Plant Dis. 2017 Jun;101(6):1002-1008. doi: 10.1094/PDIS-11-16-1682-RE. Epub 2017 Mar 20.

PMID:
30682929
7.

Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit.

Guijarro B, Larena I, Melgarejo P, De Cal A.

Int J Food Microbiol. 2017 Aug 2;254:25-35. doi: 10.1016/j.ijfoodmicro.2017.05.004. Epub 2017 May 8.

PMID:
28511111
8.

Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches.

Garcia-Benitez C, Melgarejo P, De Cal A.

Int J Food Microbiol. 2017 Jan 16;241:117-122. doi: 10.1016/j.ijfoodmicro.2016.09.010. Epub 2016 Sep 23.

PMID:
27768931
9.

Microscopic Analyses of Latent and Visible Monilinia fructicola Infections in Nectarines.

Garcia-Benitez C, Melgarejo P, De Cal A, Fontaniella B.

PLoS One. 2016 Aug 5;11(8):e0160675. doi: 10.1371/journal.pone.0160675. eCollection 2016.

10.

Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

Villarino M, Melgarejo P, De Cal A.

Int J Food Microbiol. 2016 Jun 16;227:6-12. doi: 10.1016/j.ijfoodmicro.2016.01.023. Epub 2016 Mar 28.

PMID:
27043383
11.

Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

Villarino M, Melgarejo P, De Cal A.

Int J Food Microbiol. 2016 May 2;224:22-7. doi: 10.1016/j.ijfoodmicro.2016.02.011. Epub 2016 Feb 15.

PMID:
26918325
12.

The development of genetic and molecular markers to register and commercialize Penicillium rubens (formerly Penicillium oxalicum) strain 212 as a biocontrol agent.

Villarino M, De Cal A, Melgarejo P, Larena I, Espeso EA.

Microb Biotechnol. 2016 Jan;9(1):89-99. doi: 10.1111/1751-7915.12325. Epub 2015 Oct 15.

13.

Development of a rapid and direct method for the determination of organic acids in peach fruit using LC-ESI-MS.

Sandín-España P, Mateo-Miranda M, López-Goti C, De Cal A, Alonso-Prados JL.

Food Chem. 2016 Feb 1;192:268-73. doi: 10.1016/j.foodchem.2015.07.012. Epub 2015 Jul 6.

PMID:
26304346
14.

Vegetative compatibility groups and sexual reproduction among Spanish Monilinia fructicola isolates obtained from peach and nectarine orchards, but not Monilinia laxa.

De Cal A, Egüen B, Melgarejo P.

Fungal Biol. 2014 May-Jun;118(5-6):484-94. doi: 10.1016/j.funbio.2014.03.007. Epub 2014 Apr 3.

PMID:
24863477
15.

Penicillium oxalicum reduces the number of cysts and juveniles of potato cyst nematodes.

Martinez-Beringola ML, Salto T, Vázquez G, Larena I, Melgarejo P, De Cal A.

J Appl Microbiol. 2013 Jul;115(1):199-206. doi: 10.1111/jam.12213. Epub 2013 Apr 23.

16.

High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis.

Villarino M, Sandín-España P, Melgarejo P, De Cal A.

J Agric Food Chem. 2011 Apr 13;59(7):3205-13. doi: 10.1021/jf104251z. Epub 2011 Mar 3.

PMID:
21370882
17.

Primary Inoculum Sources of Monilinia spp. in Spanish Peach Orchards and Their Relative Importance in Brown Rot.

Villarino M, Melgarejo P, Usall J, Segarra J, De Cal A.

Plant Dis. 2010 Aug;94(8):1048-1054. doi: 10.1094/PDIS-94-8-1048.

PMID:
30743484
18.

Enhancing the adhesion of Epicoccum nigrum conidia to peach surfaces and its relationship to the biocontrol of brown rot caused by Monilinia laxa.

Larena I, De Cal A, Melgarejo P.

J Appl Microbiol. 2010 Aug;109(2):583-93. doi: 10.1111/j.1365-2672.2010.04681.x. Epub 2010 Jan 22.

19.

First Report of Brown Rot Caused by Monilinia fructicola in Peach Orchards in Ebro Valley, Spain.

De Cal A, Gell I, Usall J, Viñas I, Melgarejo P.

Plant Dis. 2009 Jul;93(7):763. doi: 10.1094/PDIS-93-7-0763A.

PMID:
30764386
20.

Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit.

De Cal A, Larena I, Liñán M, Torres R, Lamarca N, Usall J, Domenichini P, Bellini A, de Eribe XO, Melgarejo P.

J Appl Microbiol. 2009 Feb;106(2):592-605. doi: 10.1111/j.1365-2672.2008.04030.x.

21.

Induced Resistance by Penicillium oxalicum Against Fusarium oxysporum f. sp. lycopersici: Histological Studies of Infected and Induced Tomato Stems.

De Cal A, Garcia-Lepe R, Melgarejo P.

Phytopathology. 2000 Mar;90(3):260-8. doi: 10.1094/PHYTO.2000.90.3.260.

22.

Production, Survival, and Evaluation of Solid-Substrate Inocula of Penicillium oxalicum, a Biocontrol Agent Against Fusarium Wilt of Tomato.

Larena I, Melgarejo P, De Cal A.

Phytopathology. 2002 Aug;92(8):863-9. doi: 10.1094/PHYTO.2002.92.8.863.

23.

Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces and relationship to the biocontrol of brown rot caused by Monilinia laxa.

Guijarro B, Melgarejo P, De Cal A.

Int J Food Microbiol. 2008 Aug 15;126(1-2):24-9. doi: 10.1016/j.ijfoodmicro.2008.04.018. Epub 2008 May 2.

PMID:
18541321
24.

Penicillium frequentans population dynamics on peach fruits after its applications against brown rot in orchards.

Guijarro B, Melgarejo P, Torres R, Lamarca N, Usall J, De Cal A.

J Appl Microbiol. 2008 Mar;104(3):659-71. Epub 2007 Oct 22.

26.

Effect of stabilizers on the shelf-life of Penicillium frequentans conidia and their efficacy as a biological agent against peach brown rot.

Guijarro B, Melgarejo P, De Cal A.

Int J Food Microbiol. 2007 Jan 25;113(2):117-24. Epub 2006 Jul 24.

PMID:
16860898
27.

Dispersal Improvement of a Powder Formulation of Penicillium oxalicum, a Biocontrol Agent of Tomato Wilt.

Sabuquillo P, De Cal A, Melgarejo P.

Plant Dis. 2005 Dec;89(12):1317-1323. doi: 10.1094/PD-89-1317.

PMID:
30791311
28.

Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits.

Larena I, De Cal A, Melgarejo P.

Int J Food Microbiol. 2004 Jul 15;94(2):161-7.

PMID:
15193802
29.

Drying of Epicoccum nigrum conidia for obtaining a shelf-stable biological product against brown rot disease.

Larena I, De Cal A, Liñán M, Melgarejo P.

J Appl Microbiol. 2003;94(3):508-14.

30.
31.

Ecophysiological factors affecting growth, sporulation and survival of the biocontrol agent Penicillium oxalicum.

Pascual S, Rico JR, De Cal A, Melgarejo P.

Mycopathologia. 1997;139(1):43-50.

PMID:
16283450

Supplemental Content

Loading ...
Support Center