Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59


Nanoparticle-Mediated Co-Delivery of Notch-1 Antibodies and ABT-737 as a Potent Treatment Strategy for Triple-Negative Breast Cancer.

Valcourt DM, Dang MN, Scully MA, Day ES.

ACS Nano. 2020 Mar 24;14(3):3378-3388. doi: 10.1021/acsnano.9b09263. Epub 2020 Feb 26.


Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies.

Wang J, Potocny AM, Rosenthal J, Day ES.

ACS Omega. 2019 Dec 27;5(1):926-940. doi: 10.1021/acsomega.9b04150. eCollection 2020 Jan 14.


Advances in targeted nanotherapeutics: From bioconjugation to biomimicry.

Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES.

Nano Res. 2018 Oct;11(10):4999-5016. doi: 10.1007/s12274-018-2083-z. Epub 2018 May 17.


Cancer Cell Membrane-Coated Nanoparticles for Cancer Management.

Harris JC, Scully MA, Day ES.

Cancers (Basel). 2019 Nov 21;11(12). pii: E1836. doi: 10.3390/cancers11121836. Review.


Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells.

Kapadia CH, Ioele SA, Day ES.

J Biomed Mater Res A. 2020 Mar;108(3):601-613. doi: 10.1002/jbm.a.36840. Epub 2019 Nov 26.


Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer.

Valcourt DM, Dang MN, Wang J, Day ES.

Ann Biomed Eng. 2019 Nov 4. doi: 10.1007/s10439-019-02399-7. [Epub ahead of print]


IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer.

Valcourt DM, Dang MN, Day ES.

J Biomed Mater Res A. 2019 Aug;107(8):1702-1712. doi: 10.1002/jbm.a.36685. Epub 2019 Apr 9.


Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a.

Goyal R, Kapadia CH, Melamed JR, Riley RS, Day ES.

Cell Mol Bioeng. 2018 Oct;11(5):383-396. doi: 10.1007/s12195-018-0535-x. Epub 2018 Jun 6.


Hematopoietic Progenitor Kinase-1 Structure in a Domain-Swapped Dimer.

Wu P, Sneeringer CJ, Pitts KE, Day ES, Chan BK, Wei B, Lehoux I, Mortara K, Li H, Wu J, Franke Y, Moffat JG, Grogan JL, Heffron TP, Wang W.

Structure. 2019 Jan 2;27(1):125-133.e4. doi: 10.1016/j.str.2018.10.025. Epub 2018 Nov 29.


Polyethylenimine-Spherical Nucleic Acid Nanoparticles against Gli1 Reduce the Chemoresistance and Stemness of Glioblastoma Cells.

Melamed JR, Ioele SA, Hannum AJ, Ullman VM, Day ES.

Mol Pharm. 2018 Nov 5;15(11):5135-5145. doi: 10.1021/acs.molpharmaceut.8b00707. Epub 2018 Oct 11.


Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery.

Melamed JR, Kreuzberger NL, Goyal R, Day ES.

Mol Ther Nucleic Acids. 2018 Sep 7;12:207-219. doi: 10.1016/j.omtn.2018.05.008. Epub 2018 Jun 2.


Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells.

Riley RS, O'Sullivan RK, Potocny AM, Rosenthal J, Day ES.

Nanomaterials (Basel). 2018 Aug 25;8(9). pii: E658. doi: 10.3390/nano8090658.


Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index.

Potocny AM, Riley RS, O'Sullivan RK, Day ES, Rosenthal J.

Inorg Chem. 2018 Sep 4;57(17):10608-10615. doi: 10.1021/acs.inorgchem.8b01225. Epub 2018 Aug 22.


Enzyme-Linked Immunosorbent Assay to Quantify Targeting Molecules on Nanoparticles.

Riley RS, Melamed JR, Day ES.

Methods Mol Biol. 2018;1831:145-157. doi: 10.1007/978-1-4939-8661-3_11.


Spherical Nucleic Acid Nanoparticles: Therapeutic Potential.

Kapadia CH, Melamed JR, Day ES.

BioDrugs. 2018 Aug;32(4):297-309. doi: 10.1007/s40259-018-0290-5. Review.


Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide.

Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J, Day ES.

Oncotarget. 2018 Jun 5;9(43):27000-27015. doi: 10.18632/oncotarget.25467. eCollection 2018 Jun 5.


Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation.

Riley RS, Dang MN, Billingsley MM, Abraham B, Gundlach L, Day ES.

Nano Lett. 2018 Jun 13;18(6):3565-3570. doi: 10.1021/acs.nanolett.8b00681. Epub 2018 May 2.


Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods.

Billingsley MM, Riley RS, Day ES.

PLoS One. 2017 May 11;12(5):e0177592. doi: 10.1371/journal.pone.0177592. eCollection 2017.



Petrosko SH, Day ES.

Methods Mol Biol. 2017;1570:E1. doi: 10.1007/978-1-4939-6840-4_23. No abstract available.


Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces.

Melamed JR, Riley RS, Valcourt DM, Billingsley MM, Kreuzberger NL, Day ES.

Methods Mol Biol. 2017;1570:1-15. doi: 10.1007/978-1-4939-6840-4_1.


Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment.

Riley RS, Day ES.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul;9(4). doi: 10.1002/wnan.1449. Epub 2017 Feb 3. Review.


Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy.

Melamed JR, Riley RS, Valcourt DM, Day ES.

ACS Nano. 2016 Dec 27;10(12):10631-10635. doi: 10.1021/acsnano.6b07673. Epub 2016 Dec 1.


Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.

Gikanga B, Eisner DR, Ovadia R, Day ES, Stauch OB, Maa YF.

PDA J Pharm Sci Technol. 2017 May-Jun;71(3):172-188. doi: 10.5731/pdajpst.2016.006726. Epub 2016 Oct 27.


Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells.

Fay BL, Melamed JR, Day ES.

Int J Nanomedicine. 2015 Nov 6;10:6931-41. doi: 10.2147/IJN.S93031. eCollection 2015.


miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.

Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH.

Genes Dev. 2015 Apr 1;29(7):732-45. doi: 10.1101/gad.257394.114.


Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy.

Melamed JR, Edelstein RS, Day ES.

ACS Nano. 2015 Jan 27;9(1):6-11. doi: 10.1021/acsnano.5b00021. Epub 2015 Jan 15.


Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A.

Yang J, Wang X, Fuh G, Yu L, Wakshull E, Khosraviani M, Day ES, Demeule B, Liu J, Shire SJ, Ferrara N, Yadav S.

Mol Pharm. 2014 Oct 6;11(10):3421-30. doi: 10.1021/mp500160v. Epub 2014 Sep 16.


Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.

Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH.

Sci Transl Med. 2013 Oct 30;5(209):209ra152. doi: 10.1126/scitranslmed.3006839.


Determining the affinity and stoichiometry of interactions between unmodified proteins in solution using Biacore.

Day ES, Capili AD, Borysenko CW, Zafari M, Whitty A.

Anal Biochem. 2013 Sep 1;440(1):96-107. doi: 10.1016/j.ab.2013.05.012. Epub 2013 May 24.


Structure of the extracellular domains of human and Xenopus Fn14: implications in the evolution of TWEAK and Fn14 interactions.

Pellegrini M, Willen L, Perroud M, Krushinskie D, Strauch K, Cuervo H, Day ES, Schneider P, Zheng TS.

FEBS J. 2013 Apr;280(8):1818-29. doi: 10.1111/febs.12206. Epub 2013 Mar 18.


Binding efficiency of protein-protein complexes.

Day ES, Cote SM, Whitty A.

Biochemistry. 2012 Nov 13;51(45):9124-36. doi: 10.1021/bi301039t. Epub 2012 Nov 1.


Vascular-targeted photothermal therapy of an orthotopic murine glioma model.

Day ES, Zhang L, Thompson PA, Zawaski JA, Kaffes CC, Gaber MW, Blaney SM, West JL.

Nanomedicine (Lond). 2012 Aug;7(8):1133-48. doi: 10.2217/nnm.11.189. Epub 2012 May 14.


Development of an Fn14 agonistic antibody as an anti-tumor agent.

Michaelson JS, Amatucci A, Kelly R, Su L, Garber E, Day ES, Berquist L, Cho S, Li Y, Parr M, Wille L, Schneider P, Wortham K, Burkly LC, Hsu YM, Joseph IB.

MAbs. 2011 Jul-Aug;3(4):362-75. Epub 2011 Jul 1.


Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism.

Silvian LF, Friedman JE, Strauch K, Cachero TG, Day ES, Qian F, Cunningham B, Fung A, Sun L, Shipps GW, Su L, Zheng Z, Kumaravel G, Whitty A.

ACS Chem Biol. 2011 Jun 17;6(6):636-47. doi: 10.1021/cb2000346. Epub 2011 Apr 20. Erratum in: ACS Chem Biol. 2011 Jul 15;6(7):761. Shipps, Gerald W [added].


A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies.

Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA.

Small. 2011 Jan 17;7(2):169-83. doi: 10.1002/smll.201000134. Epub 2010 Dec 14. Review.


Nanoshell-mediated photothermal therapy improves survival in a murine glioma model.

Day ES, Thompson PA, Zhang L, Lewinski NA, Ahmed N, Drezek RA, Blaney SM, West JL.

J Neurooncol. 2011 Aug;104(1):55-63. doi: 10.1007/s11060-010-0470-8. Epub 2010 Nov 26.


Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer.

Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL.

Int J Nanomedicine. 2010 Aug 9;5:445-54.


Nanoshells for photothermal cancer therapy.

Morton JG, Day ES, Halas NJ, West JL.

Methods Mol Biol. 2010;624:101-17. doi: 10.1007/978-1-60761-609-2_7.


The stabilization and targeting of surfactant-synthesized gold nanorods.

Rostro-Kohanloo BC, Bickford LR, Payne CM, Day ES, Anderson LJ, Zhong M, Lee S, Mayer KM, Zal T, Adam L, Dinney CP, Drezek RA, West JL, Hafner JH.

Nanotechnology. 2009 Oct 28;20(43):434005. doi: 10.1088/0957-4484/20/43/434005. Epub 2009 Oct 2.


Nanoparticles for thermal cancer therapy.

Day ES, Morton JG, West JL.

J Biomech Eng. 2009 Jul;131(7):074001. doi: 10.1115/1.3156800. Review.


Immunonanoshells for targeted photothermal ablation of tumor cells.

Lowery AR, Gobin AM, Day ES, Halas NJ, West JL.

Int J Nanomedicine. 2006;1(2):149-54.


Stoichiometry of LTbetaR binding to LIGHT.

Eldredge J, Berkowitz S, Corin AF, Day ES, Hayes D, Meier W, Strauch K, Zafari M, Tadi M, Farrington GK.

Biochemistry. 2006 Aug 22;45(33):10117-28.


Survey of intensive care physicians on the recognition and management of intra-abdominal hypertension and abdominal compartment syndrome.

Kimball EJ, Rollins MD, Mone MC, Hansen HJ, Baraghoshi GK, Johnston C, Day ES, Jackson PR, Payne M, Barton RG.

Crit Care Med. 2006 Sep;34(9):2340-8.


Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor).

Cachero TG, Schwartz IM, Qian F, Day ES, Bossen C, Ingold K, Tardivel A, Krushinskie D, Eldredge J, Silvian L, Lugovskoy A, Farrington GK, Strauch K, Schneider P, Whitty A.

Biochemistry. 2006 Feb 21;45(7):2006-13.


Small-molecule inhibition of TNF-alpha.

He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC.

Science. 2005 Nov 11;310(5750):1022-5.


Glial cell line-derived neurotrophic factor (GDNF) receptor alpha-1 (GFR alpha 1) is highly selective for GDNF versus artemin.

Carmillo P, Dagø L, Day ES, Worley DS, Rossomando A, Walus L, Orozco O, Buckley C, Miller S, Tse A, Cate RL, Rosenblad C, Sah DW, Grønborg M, Whitty A.

Biochemistry. 2005 Feb 22;44(7):2545-54.


Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA.

Day ES, Cachero TG, Qian F, Sun Y, Wen D, Pelletier M, Hsu YM, Whitty A.

Biochemistry. 2005 Feb 15;44(6):1919-31.


Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology.

Cannon MJ, Papalia GA, Navratilova I, Fisher RJ, Roberts LR, Worthy KM, Stephen AG, Marchesini GR, Collins EJ, Casper D, Qiu H, Satpaev D, Liparoto SF, Rice DA, Gorshkova II, Darling RJ, Bennett DB, Sekar M, Hommema E, Liang AM, Day ES, Inman J, Karlicek SM, Ullrich SJ, Hodges D, Chu T, Sullivan E, Simpson J, Rafique A, Luginbühl B, Westin SN, Bynum M, Cachia P, Li YJ, Kao D, Neurauter A, Wong M, Swanson M, Myszka DG.

Anal Biochem. 2004 Jul 1;330(1):98-113.


Supplemental Content

Support Center