Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 207

1.

Kinetic and structural evidence that Asp-678 plays multiple roles in catalysis by the quinoprotein glycine oxidase.

Mamounis KJ, Avalos D, Yukl ET, Davidson VL.

J Biol Chem. 2019 Nov 15;294(46):17463-17470. doi: 10.1074/jbc.RA119.011255. Epub 2019 Oct 15.

2.

Characterization of PlGoxB, a flavoprotein required for cysteine tryptophylquinone biosynthesis in glycine oxidase from Pseudoalteromonas luteoviolacea.

Mamounis KJ, Ma Z, Sanchez-Amat A, Davidson VL.

Arch Biochem Biophys. 2019 Oct 15;674:108110. doi: 10.1016/j.abb.2019.108110. Epub 2019 Sep 18.

PMID:
31541619
3.

The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases.

Ma Z, Davidson VL.

Biochemistry. 2019 Apr 30;58(17):2243-2249. doi: 10.1021/acs.biochem.9b00104. Epub 2019 Apr 12.

PMID:
30945853
4.

Structural and Spectroscopic Characterization of a Product Schiff Base Intermediate in the Reaction of the Quinoprotein Glycine Oxidase, GoxA.

Avalos D, Sabuncu S, Mamounis KJ, Davidson VL, Moënne-Loccoz P, Yukl ET.

Biochemistry. 2019 Feb 12;58(6):706-713. doi: 10.1021/acs.biochem.8b01145. Epub 2019 Jan 15.

PMID:
30605596
5.

Diversity of structures, catalytic mechanisms and processes of cofactor biosynthesis of tryptophylquinone-bearing enzymes.

Yukl ET, Davidson VL.

Arch Biochem Biophys. 2018 Sep 15;654:40-46. doi: 10.1016/j.abb.2018.07.012. Epub 2018 Jul 17. Review.

6.

Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart.

Peoples JNR, Maxmillian T, Le Q, Nadtochiy SM, Brookes PS, Porter GA Jr, Davidson VL, Ebert SN.

J Biol Chem. 2018 May 4;293(18):6925-6941. doi: 10.1074/jbc.RA118.002566. Epub 2018 Mar 14.

7.

Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.

Davidson VL.

Biochemistry. 2018 Jun 5;57(22):3115-3125. doi: 10.1021/acs.biochem.8b00123. Epub 2018 Mar 6. Review.

8.

Structure and Enzymatic Properties of an Unusual Cysteine Tryptophylquinone-Dependent Glycine Oxidase from Pseudoalteromonas luteoviolacea.

Andreo-Vidal A, Mamounis KJ, Sehanobish E, Avalos D, Campillo-Brocal JC, Sanchez-Amat A, Yukl ET, Davidson VL.

Biochemistry. 2018 Feb 20;57(7):1155-1165. doi: 10.1021/acs.biochem.8b00009. Epub 2018 Feb 6.

9.

The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role in defenses against oxidative stress.

Ma Z, Strickland KT, Cherne MD, Sehanobish E, Rohde KH, Self WT, Davidson VL.

J Biol Chem. 2018 Feb 2;293(5):1590-1595. doi: 10.1074/jbc.RA117.000421. Epub 2017 Dec 14.

10.
11.

Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away.

Feng M, Ma Z, Crudup BF, Davidson VL.

FEBS Lett. 2017 Jun;591(11):1566-1572. doi: 10.1002/1873-3468.12666. Epub 2017 May 23.

12.

Roles of Copper and a Conserved Aspartic Acid in the Autocatalytic Hydroxylation of a Specific Tryptophan Residue during Cysteine Tryptophylquinone Biogenesis.

Williamson HR, Sehanobish E, Shiller AM, Sanchez-Amat A, Davidson VL.

Biochemistry. 2017 Feb 21;56(7):997-1004. doi: 10.1021/acs.biochem.6b01137. Epub 2017 Feb 10.

13.
14.
15.
16.

A Suicide Mutation Affecting Proton Transfers to High-Valent Hemes Causes Inactivation of MauG during Catalysis.

Ma Z, Williamson HR, Davidson VL.

Biochemistry. 2016 Oct 11;55(40):5738-5745. Epub 2016 Sep 26.

17.

Mechanism of protein oxidative damage that is coupled to long-range electron transfer to high-valent haems.

Ma Z, Williamson HR, Davidson VL.

Biochem J. 2016 Jun 15;473(12):1769-75. doi: 10.1042/BCJ20160047. Epub 2016 Apr 13.

18.

Interaction of GoxA with Its Modifying Enzyme and Its Subunit Assembly Are Dependent on the Extent of Cysteine Tryptophylquinone Biosynthesis.

Sehanobish E, Campillo-Brocal JC, Williamson HR, Sanchez-Amat A, Davidson VL.

Biochemistry. 2016 Apr 26;55(16):2305-8. doi: 10.1021/acs.biochem.6b00274. Epub 2016 Apr 15.

19.

Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography.

Roessler CG, Agarwal R, Allaire M, Alonso-Mori R, Andi B, Bachega JFR, Bommer M, Brewster AS, Browne MC, Chatterjee R, Cho E, Cohen AE, Cowan M, Datwani S, Davidson VL, Defever J, Eaton B, Ellson R, Feng Y, Ghislain LP, Glownia JM, Han G, Hattne J, Hellmich J, Héroux A, Ibrahim M, Kern J, Kuczewski A, Lemke HT, Liu P, Majlof L, McClintock WM, Myers S, Nelsen S, Olechno J, Orville AM, Sauter NK, Soares AS, Soltis SM, Song H, Stearns RG, Tran R, Tsai Y, Uervirojnangkoorn M, Wilmot CM, Yachandra V, Yano J, Yukl ET, Zhu D, Zouni A.

Structure. 2016 Apr 5;24(4):631-640. doi: 10.1016/j.str.2016.02.007. Epub 2016 Mar 17.

20.

Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer.

Dow BA, Davidson VL.

Biochem J. 2016 Jan 1;473(1):67-72. doi: 10.1042/BJ20150998. Epub 2015 Oct 22.

21.

Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG.

Ma Z, Williamson HR, Davidson VL.

Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10896-901. doi: 10.1073/pnas.1510986112. Epub 2015 Aug 17.

22.

Characterization of the free energy dependence of an interprotein electron transfer reaction by variation of pH and site-directed mutagenesis.

Dow BA, Davidson VL.

Biochim Biophys Acta. 2015 Oct;1847(10):1181-6. doi: 10.1016/j.bbabio.2015.06.012. Epub 2015 Jun 15.

23.

Roles of active site residues in LodA, a cysteine tryptophylquinone dependent ε-lysine oxidase.

Sehanobish E, Chacón-Verdú MD, Sanchez-Amat A, Davidson VL.

Arch Biochem Biophys. 2015 Aug 1;579:26-32. doi: 10.1016/j.abb.2015.05.013. Epub 2015 Jun 3.

24.

A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.

Shin S, Feng M, Li C, Williamson HR, Choi M, Wilmot CM, Davidson VL.

Biochim Biophys Acta. 2015 Aug;1847(8):709-16. doi: 10.1016/j.bbabio.2015.04.008. Epub 2015 Apr 17.

25.

Use of the amicyanin signal sequence for efficient periplasmic expression in E. coli of a human antibody light chain variable domain.

Dow BA, Tatulian SA, Davidson VL.

Protein Expr Purif. 2015 Apr;108:9-12. doi: 10.1016/j.pep.2014.12.017. Epub 2015 Jan 5.

26.

Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VL, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DS, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MK, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O'Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GW, Tojo M, Topalis P, Tubio JM, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MA, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ.

Science. 2015 Jan 2;347(6217):1258522. doi: 10.1126/science.1258522. Epub 2014 Nov 27.

27.

Characterization of recombinant biosynthetic precursors of the cysteine tryptophylquinone cofactors of l-lysine-epsilon-oxidase and glycine oxidase from Marinomonas mediterranea.

Chacón-Verdú MD, Campillo-Brocal JC, Lucas-Elío P, Davidson VL, Sánchez-Amat A.

Biochim Biophys Acta. 2015 Sep;1854(9):1123-31. doi: 10.1016/j.bbapap.2014.12.018. Epub 2014 Dec 23.

PMID:
25542375
28.

Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi.

Jiang X, Peery A, Hall AB, Sharma A, Chen XG, Waterhouse RM, Komissarov A, Riehle MM, Shouche Y, Sharakhova MV, Lawson D, Pakpour N, Arensburger P, Davidson VL, Eiglmeier K, Emrich S, George P, Kennedy RC, Mane SP, Maslen G, Oringanje C, Qi Y, Settlage R, Tojo M, Tubio JM, Unger MF, Wang B, Vernick KD, Ribeiro JM, James AA, Michel K, Riehle MA, Luckhart S, Sharakhov IV, Tu Z.

Genome Biol. 2014 Sep 23;15(9):459. doi: 10.1186/s13059-014-0459-2.

29.

Mechanisms for control of biological electron transfer reactions.

Williamson HR, Dow BA, Davidson VL.

Bioorg Chem. 2014 Dec;57:213-21. doi: 10.1016/j.bioorg.2014.06.006. Epub 2014 Jul 12. Review.

30.

A simple method to engineer a protein-derived redox cofactor for catalysis.

Shin S, Choi M, Williamson HR, Davidson VL.

Biochim Biophys Acta. 2014 Oct;1837(10):1595-601. doi: 10.1016/j.bbabio.2014.05.354. Epub 2014 May 22.

31.

The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site.

Dow BA, Sukumar N, Matos JO, Choi M, Schulte A, Tatulian SA, Davidson VL.

Arch Biochem Biophys. 2014 May 15;550-551:20-7. doi: 10.1016/j.abb.2014.03.010. Epub 2014 Apr 1.

32.

Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG.

Shin S, Yukl ET, Sehanobish E, Wilmot CM, Davidson VL.

Biochemistry. 2014 Mar 4;53(8):1342-9. doi: 10.1021/bi5000349. Epub 2014 Feb 19.

33.

Steady-state kinetic mechanism of LodA, a novel cysteine tryptophylquinone-dependent oxidase.

Sehanobish E, Shin S, Sanchez-Amat A, Davidson VL.

FEBS Lett. 2014 Mar 3;588(5):752-6. doi: 10.1016/j.febslet.2014.01.021. Epub 2014 Jan 23.

34.

Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways.

Yukl ET, Williamson HR, Higgins L, Davidson VL, Wilmot CM.

Biochemistry. 2013 Dec 31;52(52):9447-55. doi: 10.1021/bi401441h. Epub 2013 Dec 16.

35.

MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.

Shin S, Davidson VL.

Arch Biochem Biophys. 2014 Feb 15;544:112-8. doi: 10.1016/j.abb.2013.10.004. Epub 2013 Oct 19. Review.

36.
37.

Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.

Abu Tarboush N, Yukl ET, Shin S, Feng M, Wilmot CM, Davidson VL.

Biochemistry. 2013 Sep 17;52(37):6358-67. doi: 10.1021/bi400905s. Epub 2013 Aug 30.

38.

Structures of MauG in complex with quinol and quinone MADH.

Yukl ET, Jensen LM, Davidson VL, Wilmot CM.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):738-43. doi: 10.1107/S1744309113016539. Epub 2013 Jun 27.

39.

Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.

Davidson VL, Wilmot CM.

Annu Rev Biochem. 2013;82:531-50. doi: 10.1146/annurev-biochem-051110-133601. Review.

40.

Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.

Geng J, Dornevil K, Davidson VL, Liu A.

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9639-44. doi: 10.1073/pnas.1301544110. Epub 2013 May 29.

41.

A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis.

Abu Tarboush N, Jensen LM, Wilmot CM, Davidson VL.

FEBS Lett. 2013 Jun 19;587(12):1736-41. doi: 10.1016/j.febslet.2013.04.047. Epub 2013 May 10.

42.

Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis.

Yukl ET, Liu F, Krzystek J, Shin S, Jensen LM, Davidson VL, Wilmot CM, Liu A.

Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4569-73. doi: 10.1073/pnas.1215011110. Epub 2013 Mar 4.

43.

Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity.

Abu Tarboush N, Shin S, Geng J, Liu A, Davidson VL.

FEBS Lett. 2012 Dec 14;586(24):4339-43. doi: 10.1016/j.febslet.2012.10.044. Epub 2012 Nov 2.

44.

Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG.

Jensen LM, Meharenna YT, Davidson VL, Poulos TL, Hedman B, Wilmot CM, Sarangi R.

J Biol Inorg Chem. 2012 Dec;17(8):1241-55. doi: 10.1007/s00775-012-0939-3. Epub 2012 Sep 30.

45.
46.

Role of calcium in metalloenzymes: effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG.

Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, Liu A.

Biochemistry. 2012 Feb 28;51(8):1586-97. doi: 10.1021/bi201575f. Epub 2012 Feb 16.

47.

Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.

Davidson VL, Liu A.

Biochim Biophys Acta. 2012 Nov;1824(11):1299-305. doi: 10.1016/j.bbapap.2012.01.008. Epub 2012 Jan 28. Review.

48.

Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.

Feng M, Jensen LM, Yukl ET, Wei X, Liu A, Wilmot CM, Davidson VL.

Biochemistry. 2012 Feb 28;51(8):1598-606. doi: 10.1021/bi201882e. Epub 2012 Feb 10.

49.

Replacement of the axial copper ligand methionine with lysine in amicyanin converts it to a zinc-binding protein that no longer binds copper.

Sukumar N, Choi M, Davidson VL.

J Inorg Biochem. 2011 Dec;105(12):1638-44. doi: 10.1016/j.jinorgbio.2011.08.002. Epub 2011 Aug 12.

50.

Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.

Tarboush NA, Jensen LM, Yukl ET, Geng J, Liu A, Wilmot CM, Davidson VL.

Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16956-61. doi: 10.1073/pnas.1109423108. Epub 2011 Oct 3.

Supplemental Content

Loading ...
Support Center