Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Home monitoring of sleep with a temporary-tattoo EEG, EOG and EMG electrode array: a feasibility study.

Shustak S, Inzelberg L, Steinberg S, Rand D, David Pur M, Hillel I, Katzav S, Fahoum F, De Vos M, Mirelman A, Hanein Y.

J Neural Eng. 2019 Apr;16(2):026024. doi: 10.1088/1741-2552/aafa05. Epub 2018 Dec 19.

PMID:
30566912
2.

Direct Electrical Neurostimulation with Organic Pigment Photocapacitors.

Rand D, Jakešová M, Lubin G, Vėbraitė I, David-Pur M, Đerek V, Cramer T, Sariciftci NS, Hanein Y, Głowacki ED.

Adv Mater. 2018 Jun;30(25):e1707292. doi: 10.1002/adma.201707292. Epub 2018 May 2.

PMID:
29717514
3.

A Wearable High-Resolution Facial Electromyography for Long Term Recordings in Freely Behaving Humans.

Inzelberg L, Rand D, Steinberg S, David-Pur M, Hanein Y.

Sci Rep. 2018 Feb 1;8(1):2058. doi: 10.1038/s41598-018-20567-y.

4.

Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

Roy S, David-Pur M, Hanein Y.

ACS Appl Mater Interfaces. 2017 Oct 11;9(40):35169-35177. doi: 10.1021/acsami.7b07346. Epub 2017 Sep 29.

PMID:
28925684
5.

Corrigendum: Temporary-tattoo for long-term high fidelity biopotential recordings.

Bareket L, Inzelberg L, Rand D, David-Pur M, Rabinovich D, Brandes B, Hanein Y.

Sci Rep. 2017 Jan 23;7:41345. doi: 10.1038/srep41345. No abstract available.

6.

Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time.

Eleftheriou CG, Zimmermann JB, Kjeldsen HD, David-Pur M, Hanein Y, Sernagor E.

Biomaterials. 2017 Jan;112:108-121. doi: 10.1016/j.biomaterials.2016.10.018. Epub 2016 Oct 11.

7.

Temporary-tattoo for long-term high fidelity biopotential recordings.

Bareket L, Inzelberg L, Rand D, David-Pur M, Rabinovich D, Brandes B, Hanein Y.

Sci Rep. 2016 May 12;6:25727. doi: 10.1038/srep25727. Erratum in: Sci Rep. 2017 Jan 23;7:41345.

8.

Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas.

Bareket L, Waiskopf N, Rand D, Lubin G, David-Pur M, Ben-Dov J, Roy S, Eleftheriou C, Sernagor E, Cheshnovsky O, Banin U, Hanein Y.

Nano Lett. 2014 Nov 12;14(11):6685-92. doi: 10.1021/nl5034304. Epub 2014 Oct 31.

9.

All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation.

David-Pur M, Bareket-Keren L, Beit-Yaakov G, Raz-Prag D, Hanein Y.

Biomed Microdevices. 2014 Feb;16(1):43-53. doi: 10.1007/s10544-013-9804-6.

10.

Carbon nanotube-based neurochips.

David-Pur M, Shein M, Hanein Y.

Methods Mol Biol. 2010;625:171-7. doi: 10.1007/978-1-60761-579-8_14.

PMID:
20422389
11.

One-to-one neuron-electrode interfacing.

Greenbaum A, Anava S, Ayali A, Shein M, David-Pur M, Ben-Jacob E, Hanein Y.

J Neurosci Methods. 2009 Sep 15;182(2):219-24. doi: 10.1016/j.jneumeth.2009.06.012. Epub 2009 Jun 18.

PMID:
19540264
12.

Carbon nanotube electrodes for effective interfacing with retinal tissue.

Shoval A, Adams C, David-Pur M, Shein M, Hanein Y, Sernagor E.

Front Neuroeng. 2009 Apr 20;2:4. doi: 10.3389/neuro.16.004.2009. eCollection 2009.

13.

Process entanglement as a neuronal anchorage mechanism to rough surfaces.

Sorkin R, Greenbaum A, David-Pur M, Anava S, Ayali A, Ben-Jacob E, Hanein Y.

Nanotechnology. 2009 Jan 7;20(1):015101. doi: 10.1088/0957-4484/20/1/015101. Epub 2008 Dec 5.

PMID:
19417241
14.

Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.

Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, Ben-Jacob E, Hanein Y.

Biomed Microdevices. 2009 Apr;11(2):495-501. doi: 10.1007/s10544-008-9255-7.

PMID:
19067173

Supplemental Content

Loading ...
Support Center